首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   11篇
  2022年   1篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   8篇
  2013年   15篇
  2012年   10篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   13篇
  2003年   4篇
  2002年   11篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1960年   1篇
  1956年   1篇
  1942年   1篇
排序方式: 共有194条查询结果,搜索用时 344 毫秒
1.
Summary Although serological reactivity to human papillomavirus type 16 (HPV-16) proteins has been demonstrated in patients with invasive cervical carcinoma, the degree of seroreactivity to these proteins in women with preinvasive disease and its relationship to the HPV type associated with the disease are unclear. We obtained sera from 27 women undergoing cone biopsy for cervical precursor lesions and 22 controls and analyzed seroreactivity by Western blot to fusion proteins containing portions of the HPV-16 E4, L1 and L2 open-reading frames (ORFs). Positives were analyzed by scanning densitometry and intensity values for each case plotted relative to controls. Cervical biopsy specimens from patients were analyzed for HPV-16 nucleic acids by DNA · DNA in situ hybridization. Mean intensity values for seroreactivity to the pATH-E4 protein approached significance (P = 0.058) and a significantly higher proportion of cases vs controls registered values over 4.0 for pATH-E4 (26% vs 4.5%;P = 0.04) and pATH-L2 (48% vs 18%;P = 0.03) proteins. A significantly higher mean intensity value for E4 was observed for cases containing HPV-16 DNA vs HPV-16 negative cases or controls. Thus, seroreactivity to HPV-16-derived proteins may be more common in women with preinvasive cervical disease, and for some protein targets (E4) may indicate a relatively type-specific response.Supported in part by grants from the National Cancer Institute [CA 47676 (C.P.C.)], American Cancer Society [MV-395 (C.P.C.)] and an institutional support grant (J.K.R.). Dr. Crum is a recipient of a Physician Scientist Award from the National Institute of Allergy and Infectious Disease (AI00628)  相似文献   
2.
We have shown previously that anti-phenylphosphocholine antibodies elicited by phosphocholine-keyhole limpet hemocyanin can be divided into two populations according to their ability to recognize the two hapten analogues p-nitrophenylphosphocholine (NPPC) and p-nitrophenyl 3,3-dimethylbutyl phosphate (NPDBP). These analogues differ from each other in that NPPC has a positively charged nitrogen in the choline moiety, whereas NPDBP lacks the positively charged nitrogen. Group II-A antibodies bind only NPPC, whereas group II-B antibodies bind both ligands. Here, by infrared and nuclear magnetic resonance spectroscopic investigations, we find that when free in solution NPPC has a predominantly fixed structure in which the termini approach each other, probably due to electrostatic interactions within the molecule; this "bent" structural feature is retained when the ligand is bound by antibody. In contrast, the structure of unbound NPDBP is less fixed, being characterized by rapidly interchanging conformations corresponding to an open chain structure with less overall proximity of the termini compared to NPPC. The overall shape of NPPC is essentially unaltered by binding, whereas in the case of NPDBP what was a minor conformation in the unbound state becomes the predominate conformation of the bound ligand. Thus, our results are consistent with these antibodies providing a molecular template for stabilizing the conformation of the bound ligand.  相似文献   
3.
This study aimed to examine whether lung tissue extracellular matrix (ECM) hydrogels have protective effects on radiation-induced lung injury (RILI). The cytocompatibility and histocompatibility were tested for the obtained ECM-derived hydrogel. Sprague–Dawley rats were randomly divided into three groups (n = 18): control group (control); rats receiving irradiation and intratracheal injection of normal saline (IR + NS); and rats receiving irradiation and intratracheal injection of lung ECM-derived hydrogel (IR + ECM). The wet/dry weight ratio was used to evaluate the congestion and edema of the lungs. Histopathological analysis of lung tissues was performed using hemotoxylin and eosin staining and Masson's trichrome staining. Immunohistochemical staining and western blot analyses were carried out to determine the expression of epithelial–mesenchymal transition (EMT)-related proteins in lung tissues (E-cadherin, α-smooth muscle actin [α-SMA], and vimentin). In addition, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and interleukin-6 (IL-6), hydroxyproline, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were also evaluated. The ECM-derived hydrogels had good cytocompatibility and histocompatibility. ECM-derived hydrogel treatment improved lung histopathology injury and pulmonary edema. Higher expression of E-cadherin and lower expression of vimentin and α-SMA were found in the IR + ECM group compared with those in the IR + NS group. Hydroxyproline levels were reduced by ECM-derived hydrogel treatment compared with those in the IR + NS group. Obvious increases of TNF-α, IL-6, and TGF-β1 were identified following irradiation. Marked reductions in MDA content and increases in SOD were induced by ECM-derived hydrogel treatment in rats after radiation. ECM-derived hydrogels were shown to protect against RILI, potentially by reducing EMT, inflammation, and oxidative damage.  相似文献   
4.
5.
Nitrogen removal from wastewater by algae provides the potential benefit of producing lipids for biodiesel and biomass for anaerobic digestion. Further, ammonium is the renewable form of nitrogen produced during anaerobic digestion and one of the main nitrogen sources associated with wastewater. The wastewater isolates Scenedesmus sp. 131 and Monoraphidium sp. 92 were grown with ammonium, nitrate, or urea in the presence of 5 % CO2, and ammonium and nitrate in the presence of air to optimize the growth and biofuel production of these chlorophytes. Results showed that growth on ammonium, in both 5 % CO2 and air, caused a significant decrease in pH during the exponential phase causing growth inhibition due to the low buffering capacity of the medium. Therefore, biological buffers and pH controllers were utilized to prevent a decrease in pH. Growth on ammonium with pH control (synthetic buffers or KOH dosing) demonstrated that growth (rate and yield), biodiesel production, and ammonium utilization, similar to nitrate- and urea-amended treatments, can be achieved if sufficient CO2 is available. Since the use of buffers is economically limited to laboratory-scale experiments, chemical pH control could bridge the gap encountered in the scale-up to industrial processes.  相似文献   
6.
7.
8.
The toxicity of copper [Cu(II)] to sulfate-reducing bacteria (SRB) was studied by using Desulfovibrio desulfuricans G20 in a medium (MTM) developed specifically to test metal toxicity to SRB (R. K. Sani, G. Geesey, and B. M. Peyton, Adv. Environ. Res. 5:269-276, 2001). The effects of Cu(II) toxicity were observed in terms of inhibition in total cell protein, longer lag times, lower specific growth rates, and in some cases no measurable growth. At only 6 microM, Cu(II) reduced the maximum specific growth rate by 25% and the final cell protein concentration by 18% compared to the copper-free control. Inhibition by Cu(II) of cell yield and maximum specific growth rate increased with increasing concentrations. The Cu(II) concentration causing 50% inhibition in final cell protein was evaluated to be 16 microM. A Cu(II) concentration of 13.3 microM showed 50% inhibition in maximum specific growth rate. These results clearly show significant Cu(II) toxicity to SRB at concentrations that are 100 times lower than previously reported. No measurable growth was observed at 30 microM Cu(II) even after a prolonged incubation of 384 h. In contrast, Zn(II) and Pb(II), at 16 and 5 microM, increased lag times by 48 and 72 h, respectively, but yielded final cell protein concentrations equivalent to those of the zinc- and lead-free controls. Live/dead staining, based on membrane integrity, indicated that while Cu(II), Zn(II), and Pb(II) inhibited growth, these metals did not cause a loss of D. desulfuricans membrane integrity. The results show that D. desulfuricans in the presence of Cu(II) follows a growth pattern clearly different from the pattern followed in the presence of Zn(II) or Pb(II). It is therefore likely that Cu(II) toxicity proceeds by a mechanism different from that of Zn(II) or Pb(II) toxicity.  相似文献   
9.
Inhibition of hexavalent chromium [Cr(VI)] reduction due to nitrate and nitrite was observed during tests with Shewanella oneidensis MR-1 (previously named Shewanella putrefaciens MR-1 and henceforth referred to as MR-1). Initial Cr(VI) reduction rates were measured at various nitrite concentrations, and a mixed inhibition kinetic model was used to determine the kinetic parameters-maximum Cr(VI) reduction rate and inhibition constant [V(max,Cr(VI)) and K(i,Cr(VI))]. Values of V(max,Cr(VI)) and K(i,Cr(VI)) obtained with MR-1 cultures grown under denitrifying conditions were observed to be significantly different from the values obtained when the cultures were grown with fumarate as the terminal electron acceptor. It was also observed that a single V(max,Cr(VI)) and K(i,Cr(VI)) did not adequately describe the inhibition kinetics of either nitrate-grown or fumarate-grown cultures. The inhibition patterns indicate that Cr(VI) reduction in MR-1 is likely not limited to a single pathway, but occurs via different mechanisms some of which are dependent on growth conditions. Inhibition of nitrite reduction due to the presence of Cr(VI) was also studied, and the kinetic parameters V(max,NO2) and K(i,NO2) were determined. It was observed that these coefficients also differed significantly between MR-1 grown under denitrifying conditions and fumarate reducing conditions. The inhibition studies suggest the involvement of nitrite reductase in Cr(VI) reduction. Because nitrite reduction is part of the anaerobic respiration process, inhibition due to Cr(VI) might be a result of interaction with the components of the anaerobic respiration pathway such as nitrite reductase. Also, differences in the degree of inhibition of nitrite reduction activity by chromate at different growth conditions suggest that the toxicity mechanism of Cr(VI) might also be dependent on the conditions of growth. Cr(VI) reduction has been shown to occur via different pathways, but to our knowledge, multiple pathways within a single organism leading to Cr(VI) reduction has not been reported previously.  相似文献   
10.
Cr(VI) reduction was observed during tests with Shewanella oneidensis MR-1 (previously named S. putrefaciens MR-1) while being grown with nitrate or fumarate as electron acceptor and lactate as electron donor. From the onset of anoxic growth on fumarate, we measured a gradual and progressive increase in the specific Cr(VI) reduction rate with incubation time until a maximum was reached at late exponential/early stationary phase. Under denitrifying conditions, the specific Cr(VI) reduction rate was inhibited by nitrite, which is produced during nitrate reduction. However, once nitrite was consumed, the specific reduction rate increased until a maximum was reached, again during the late exponential/early stationary phase. Thus, under both fumarate- and nitrate-reducing conditions, an increase in the specific Cr(VI) reduction rate was observed as the microorganisms transition from oxic to anoxic growth conditions, presumably as a result of induction of enzyme systems capable of reducing Cr(VI). Although Cr(VI) reduction has been studied in MR-1 and in other facultative bacteria under both oxic and anoxic conditions, a transition in specific reduction rates based on physiological conditions during growth is a novel finding. Such physiological responses provide information required for optimizing the operation of in situ systems for remediating groundwater contaminated with heavy metals and radionuclides, especially those that are characterized by temporal variations in oxygen content. Moreover, such information may point the way to a better understanding of the cellular processes used by soil bacteria to accomplish Cr(VI) reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号