首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   13篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   14篇
  2014年   15篇
  2013年   12篇
  2012年   21篇
  2011年   11篇
  2010年   13篇
  2009年   8篇
  2008年   25篇
  2007年   15篇
  2006年   15篇
  2005年   19篇
  2004年   16篇
  2003年   12篇
  2002年   18篇
  2001年   3篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
1.
Abstract

Peptide nucleic acid (PNA) is an oligonucleotide mimic in which the backbone of DNA has been replaced by a pseudopeptide. We here show that there are distinct variations as to how PNA oligomers interact with double-stranded DNA depending on choice of nucleobases. Thymine-rich homopyrimidine PNA oligomers recognise double-stranded polynucleotides by forming PNA2-DNA triplexes with the DNA purine strand. By contrast, cytosine-rich homopyrimidine PNAs add to double-stranded polynucleotides as Hoogsteen strands, forming PNA-DNA2 triplexes, while homopurine, or alternating thymine-guanine, PNA oligomers invade DNA to form PNA-DNA duplexes.  相似文献   
2.
3.

Background

Few studies in low-income settings analyse linear growth trajectories from foetal life to pre-adolescence. The aim of this study is to describe linear growth and stunting from birth to 10 years in rural Bangladesh and to analyse whether maternal and environmental determinants at conception are associated with linear growth throughout childhood and stunting at 10 years.

Methods and Findings

Pregnant women participating in the MINIMat trial were identified in early pregnancy and a birth cohort (n = 1054) was followed with 19 growth measurements from birth to 10 years. Analyses of baseline predictors and mean height-for-age Z-scores (HAZ) over time were modelled using GLMM. Logistic regression analysis was used to investigate the associations between baseline predictors and stunting (HAZ<-2) at 10 years. HAZ decreased to 2 years, followed by an increase up to 10 years, while the average height-for-age difference in cm (HAD) to the WHO reference median continued to increase up to 10 years. Prevalence of stunting was highest at 2 years (50%) decreasing to 29% at 10 years. Maternal height, maternal educational level and season of conception were all independent predictors of HAZ from birth to pre-adolescence (p<0.001) and stunting at 10 years. The highest probability to be stunted at 10 years was for children born by short mothers (<147.5 cm) (ORadj 2.93, 95% CI: 2.06–4.20), mothers with no education (ORadj 1.74, 95% CI 1.17–2.81) or those conceived in the pre-monsoon season (ORadj 1.94, 95% CI 1.37–2.77).

Conclusions

Height growth trajectories and prevalence of stunting in pre-adolescence showed strong intergenerational associations, social differentials, and environmental influence from foetal life. Targeting women before and during pregnancy is needed for the prevention of impaired child growth.  相似文献   
4.
5.
Life grows almost everywhere on earth, including in extreme environments and under harsh conditions. Organisms adapted to high temperatures are called thermophiles (growth temperature 45-75 degrees C) and hyperthermophiles (growth temperature >or= 80 degrees C). Proteins from such organisms usually show extreme thermal stability, despite having folded structures very similar to their mesostable counterparts. Here, we summarize the current data on thermodynamic and kinetic folding/unfolding behaviors of proteins from hyperthermophilic microorganisms. In contrast to thermostable proteins, rather few (i.e. less than 20) hyperthermostable proteins have been thoroughly characterized in terms of their in vitro folding processes and their thermodynamic stability profiles. Examples that will be discussed include co-chaperonin proteins, iron-sulfur-cluster proteins, and DNA-binding proteins from hyperthermophilic bacteria (i.e. Aquifex and Theromotoga) and archea (e.g. Pyrococcus, Thermococcus, Methanothermus and Sulfolobus). Despite the small set of studied systems, it is clear that super-slow protein unfolding is a dominant strategy to allow these proteins to function at extreme temperatures.  相似文献   
6.
Unconventional myosins are actin-based motors with a growing number of attributed functions. Interestingly, it has been proposed that integrins are transported by unidentified myosins to facilitate cellular remodelling. Here we present an interaction between the unconventional myosin-X (Myo10) FERM (band 4.1/ezrin/radixin/moesin) domain and an NPXY motif within beta-integrin cytoplasmic domains. Importantly, knock-down of Myo10 by short interfering RNA impaired integrin function in cell adhesion, whereas overexpression of Myo10 stimulated the formation and elongation of filopodia in an integrin-dependent manner and relocalized integrins together with Myo10 to the tips of filopodia. This integrin relocalization and filopodia elongation did not occur with Myo10 mutants deficient in integrin binding or with a beta(1)-integrin point mutant deficient in Myo10 binding. Taken together, these results indicate that Myo10-mediated relocalization of integrins might serve to form adhesive structures and thereby promote filopodial extension.  相似文献   
7.
The Escherichia coli Hsp40 DnaJ uses its J-domain to target substrate polypeptides for binding to the Hsp70 DnaK, but the mechanism of J-domain function has been obscured by a substrate-like interaction between DnaJ and DnaK. ATP hydrolysis in DnaK is associated with a conformational change that captures the substrate, and both DnaJ and substrate can stimulate ATP hydrolysis. However, substrates cannot trigger capture by DnaK in the presence of ATP, and substrates stimulate a DnaK conformational change that is uncoupled from ATP hydrolysis. The role of the J-domain was examined using the fluorescent derivative of a fusion protein composed of the J-domain and a DnaK-binding peptide. In the absence of ATP, DnaK-binding affinity of the fusion protein is similar to that of the unfused peptide. However, in the presence of ATP, the affinity of the fusion protein is dramatically increased, which is opposite to the decrease in DnaK affinity typically exhibited by peptides. Binding of a fusion protein that contains a defective J-domain is insensitive to ATP. According to results from isothermal titration calorimetry, the J-domain binds to the DnaK ATPase domain with weak affinity (K(D) = 23 microM at 20 degrees C). The interaction is characterized by a positive enthalpy, small heat capacity change (DeltaC(p)= -33 kcal mol(-1)), and increasing binding affinity for increasing temperatures in the physiological range. In conditions that support binding of the J-domain to the ATPase domain, the J-domain accelerates ATP hydrolysis and a simultaneous conformational change in DnaK that is associated with peptide capture. The defective J-domain is inactive, despite the fact that it binds to the DnaK ATPase domain with higher than wild-type affinity. The results are most consistent with an allosteric mechanism of J-domain action in which the J-domain couples ATP hydrolysis to peptide capture by accelerating ATP hydrolysis and delaying DnaK closure until ATP is hydrolyzed.  相似文献   
8.
Ribonucleotide reductase (RNR) catalyzes the essential production of deoxyribonucleotides in all living cells. In this study we have established a sensitive in vivo assay to study the activity of RNR in aerobic Escherichia coli cells. The method is based on the complementation of a chromosomally encoded nonfunctional RNR with plasmid-encoded RNR. This assay can be used to determine in vivo activity of RNR mutants with activities beyond the detection limits of traditional in vitro assays. E. coli RNR is composed of two homodimeric proteins, R1 and R2. The R2 protein contains a stable tyrosyl radical essential for the catalysis that takes place at the R1 active site. The three-dimensional structures of both proteins, phylogenetic studies, and site-directed mutagenesis experiments show that the radical is transferred from the R2 protein to the active site in the R1 protein via a radical transfer pathway composed of at least nine conserved amino acid residues. Using the new assay we determined the in vivo activity of mutants affecting the radical transfer pathway in RNR and identified some residual radical transfer activity in two mutant R2 constructs (D237N and W48Y) that had previously been classified as negative for enzyme activity. In addition, we show that the R2 mutant Y356W is completely inactive, in sharp contrast to what has previously been observed for the corresponding mutation in the mouse R2 enzyme.  相似文献   
9.
Pseudomonas aeruginosa azurin is a blue-copper protein with a beta-barrel fold. Here we report that, at conditions where thermal unfolding of apo-azurin is reversible, the reaction occurs in a single step with a transition midpoint (T(m)) of 69 degrees C (pH 7). The active-site mutation His117Gly creates a cavity in the beta-barrel near the surface but does not perturb the overall fold (T(m) of 64 degrees C, pH 7). Oxidation of the active-site cysteine (Cysteine-112) in wild-type azurin, which occurs readily at higher temperatures, results in a modified protein that cannot adopt a native-like structure. In sharp contrast, Cysteine-112 oxidation in His117Gly azurin yields a modified apo-azurin that appears folded and displays cooperative, reversible unfolding (T(m) approximately 55 degrees C, pH 7). We conclude that azurin's beta-barrel is a rigid structural element that constrains the structure of its surface; a bulky modification can only be accommodated if complementary space is provided.  相似文献   
10.
Pseudomonas aeruginosa azurin is a blue-copper protein with a Greek-key fold. Removal of copper produces an apoprotein with the same structure as holoazurin. To address the effects on thermodynamic stability and folding dynamics caused by small cavities in a beta-barrel, we have studied the behavior of the apo-forms of wild-type and two mutant (His-46-Gly and His-117-Gly) azurins. The equilibrium- and kinetic-folding and unfolding reactions appear as two-state processes for all three proteins. The thermodynamic stability of the two mutants is significantly decreased as compared with the stability of wild-type azurin, in accord with cavities in or near the hydrophobic interior having an overall destabilizing effect. Large differences are also found in the unfolding rates: the mutants unfold much faster than wild-type azurin. In contrast, the folding-rate constants are almost identical for the three proteins and closely match the rate-constant predicted from the native-state topology of azurin. We conclude that the topology is more important than equilibrium stability in determining the folding speed of azurin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号