首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   5篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   8篇
  2006年   10篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   10篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.
Superoxide anions (O2.−) generated by the reaction of xanthine with xanthine oxidase were measured by the reduction of cytochrome c and by electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the relative sensitivities of these two techniques for the measurement of O2.−. Mixtures of xanthine, xanthine oxidase, DMPO generated two adducts, a transient DMPO-OOH and a smaller but longer-lived DMPO-OH. Both adducts were inhibited by superoxide dismutase (SOD), demonstrating they originated from O2.−, and were also significantly decreased when the experiments were performed using unchelated buffers, suggesting that metal ion impurities in unchelated buffers alter the formation or degradation of DMPO-adducts. O2.−, generated by concentrations of xanthine as low as 0.05 μM, were detectable using EPR spin trapping. In contrast, mixtures of xanthine, xanthine oxidase, and cytochrome c measured spectrophotometrically at 550 nm demonstrated that concentrations of xanthine above 1 μM were required to produce measurable levels of reduced cytochrome c. These studies demonstrate that spin trapping using DMPO was at least 20-fold more sensitive than the reduction of cytochrome c for the measurement of superoxide anions. However, at levels of superoxide generation where cytochrome c provides a linear measurement of production, EPR spin trapping may underestimate radical production, probably due to degradation of DMPO radical adducts.  相似文献   
2.
3.
Nitric oxide (NO.) generated from nitric oxide synthase (NOS) isoforms bound to cellular membranes may serve to modulate oxidative stresses in cardiac muscle and thereby regulate the function of key membrane-associated enzymes. Ischemia is known to inhibit the function of sarcolemmal enzymes, including the (Na+ + K+)-ATPase, but it is unknown whether concomitant injury to sarcolemma (SL)-associated NOS isoforms may contribute to this process by reducing the availability of locally generated NO. Here we report that nNOS, as well as eNOS (SL NOSs), are tightly associated with cardiac SL membranes in several different species. In isolated perfused rat hearts, global ischemia caused a time-dependent irreversible injury to cardiac SL NOSs and a disruption of SL NO. generation. Pretreatment with low concentrations of the NO. donor 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7) markedly protected both SL NOS and (Na+ + K+)-ATPase functions against ischemia-induced inactivation. Moreover, ischemia impaired SL Na+/K+ binding, and NOC-7 significantly prevented ischemic injury to the ion binding sites on (Na+ + K+)-ATPase. These novel findings indicate that NO. can protect cardiac SL NOSs and (Na+ + K+)-ATPase against ischemia-induced inactivation and suggest that locally generated NO. may serve to regulate SL Na+/K+ ion active transport in the heart.  相似文献   
4.
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spa-tial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans.  相似文献   
5.
Nitric oxide (NO*) is produced endogenously from NOS isoforms bound to sarcolemmal (SL) and sarcoplasmic reticulum (SR) membranes. To investigate whether locally generated NO* directly affects the activity of enzymes mediating ion active transport, we studied whether knockout of selected NOS isoforms would affect the functions of cardiac SL (Na+ + K+)-ATPase and SR Ca2+-ATPase. Cardiac SL and SR vesicles containing either SL (Na+ + K+)-ATPase or SR Ca2+-ATPase were isolated from mice lacking either nNOS or eNOS, or both, and tested for enzyme activities. Western blot analysis revealed that absence of single or double NOS isoforms did not interrupt the protein expression of SL (Na+ + K+)-ATPase and SR Ca2+-ATPase in cardiac muscle cells. However, lack of NOS isoforms in cardiac muscle significantly altered both (Na+ + K+)-ATPase activity and SR Ca2+-ATPase function. Our experimental results suggest that disrupted endogenous NO* production may change local redox conditions and lead to an unbalanced free radical homeostasis in cardiac muscle cells which, in turn, may affect key enzyme activities and membrane ion active transport systems in the heart.  相似文献   
6.
Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO(2) measurements were taken from random locations at a depth of approximately 3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness.  相似文献   
7.
Hypoxia, caused by disrupted vasculature and peripheral vasculopathies, is a key factor that limits dermal wound healing. Factors that can increase oxygen delivery to the regional tissue, such as supplemental oxygen, warmth, and sympathetic blockade, can accelerate healing. Clinical experience with adjunctive hyperbaric oxygen therapy (HBOT) in the treatment of chronic wounds have shown that wound hyperoxia may increase granulation tissue formation and accelerate wound contraction and secondary closure. However, HBOT is not applicable to all wound patients and may pose the risk of oxygen toxicity. Thus, the efficacy of topical oxygen treatment in an experimental setting using the pre-clinical model involving excisional dermal wound in pigs was assessed. Exposure of open dermal wounds to topical oxygen treatment increased tissue pO2 of superficial wound tissue. Repeated treatment accelerated wound closure. Histological studies revealed that the wounds benefited from the treatment. The oxygen treated wounds showed signs of improved angiogenesis and tissue oxygenation. Topically applied pure oxygen has the potential of benefiting some wound types. Further studies testing the potential of topical oxygen in pre-clinical and clinical settings are warranted.  相似文献   
8.
Copper-zinc superoxide dismutase (CuZnSOD) specifically catalyzes the removal of superoxide radicals to protect cellular function against the generation of superoxide-dependent hydroxyl radicals ((.)OH). However, an unexpected observation reveals that denatured CuZnSOD (dCuZnSOD) itself induces (.)OH formation. This dCuZnSOD-dependent (.)OH generation was not inhibited by active CuZnSOD, suggesting that it is a superoxide-independent process. Sodium cyanide, histidine, and N,N'-diethyldithiocarbamate abolished (.)OH generation, implying that Cu may be responsible for dCuZnSOD-induced (.)OH formation. Catalase eliminated ()OH generation, suggesting that hydrogen peroxide may be involved in the mechanism of dCuZnSOD-mediated (.)OH production. Furthermore, nitric oxide ((.)NO) completely inhibited dCuZnSOD-induced (.)OH radical generation, indicating that (.)NO is an important (.)OH radical scavenger. Our results shed new light on the effect of dysfunctional CuZnSOD and suggest that structural disorder of the enzyme may be one of the endogenous pathways of toxic (.)OH formation in biological systems.  相似文献   
9.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   
10.
Doxorubicin (DOX) and its derivatives are used as chemotherapeutic drugs to treat cancer patients. However, production of DOX-mediated reactive oxygen species (ROS) by prolonged use of these drugs has been found to cause dilative cardiomyopathy and congestive heart failure. Thus various preventive modalities have been developed to avoid this side effect. We have found that the DOX-mediated oxidant-induced toxicity in cardiac cells could be minimized by hyperthermia-induced small heat shock protein 27 (HSP27); that is, this protein acts as an endogenous antioxidant against DOX-derived oxidants such as H(2)O(2). Heat shock-induced HSP27 was found to act as an antiapoptotic protein (reducing ROS and Bax-to-Bcl2 ratio) against DOX, and its phosphorylated isoforms stabilized F-actin remodeling in DOX-treated cardiac cells and, hence, attenuated the toxicity. Protein kinase assays and proteomic analyses suggested that higher expression of HSP27 and its phosphorylation are responsible for the protection in heat-shocked cells. Two-dimensional gel electrophoresis showed six isoforms (nonphosphorylated and phosphorylated) of HSP27. Matrix-assisted laser desorption/ionization time of flight analyses showed alpha- and beta-isoforms of HSP27, which are phosphorylated by various protein kinases. Ser(15) and Ser(85) phosphorylation of HSP27 by MAPK-assisted protein kinase 2 was found to be the key mechanism in reduction of apoptosis and facilitation of F-actin remodeling. The present study illustrates that hyperthermia protects cells from DOX-induced death through induction and phosphorylation of HSP27 and its antiapoptotic and actin-remodeling activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号