首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   104篇
  国内免费   156篇
  2024年   4篇
  2023年   37篇
  2022年   33篇
  2021年   119篇
  2020年   64篇
  2019年   100篇
  2018年   78篇
  2017年   60篇
  2016年   98篇
  2015年   108篇
  2014年   116篇
  2013年   98篇
  2012年   130篇
  2011年   105篇
  2010年   57篇
  2009年   41篇
  2008年   41篇
  2007年   44篇
  2006年   34篇
  2005年   30篇
  2004年   24篇
  2003年   11篇
  2002年   7篇
  2001年   9篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1991年   3篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有1493条查询结果,搜索用时 46 毫秒
1.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
2.
During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China.  相似文献   
3.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
4.
以牛血球为材料,经溶血等处理和丙酮沉淀,获得牛血球超氧化物歧化酶粗品。此粗酶可以通过DEAE-Sepharose和CM-Sepharose快速柱层析,获得超氧化物歧化酶纯品。纯化的酶比活可达13500u/mg,经PAGE、SDS-PAGE和快速蛋白液相色谱(FPLC)检测,结果表明,纯化酶是均一的Sephadex G-100凝胶过滤测得该酶分子量为31,800,SDS-PAGE测得亚基分子量为15  相似文献   
5.
Marine Biotechnology - Takifugu rubripes is important commercially fish species in China and it is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic...  相似文献   
6.
Fan  Pengfei  Chen  Yuan  Ma  Haigang  Chen  Tao  Huang  Xia  Wang  Zhining 《International journal of primatology》2023,44(1):171-174
International Journal of Primatology -  相似文献   
7.
Grape pistil has an important influence on fruit size and quality. However, there were few studies on grape ovary, and the development process of the ovary is still unclear. Therefore, in this paper, four different grape varieties with different lengths of small inflorescences, namely ‘Musct Hambourg’ grape (Vitis vinifera), ‘Concord’ grape (Vitis labrusca), ‘ShanPuTao’ grape (Vitis amurensis) and ‘GongNiang2Hao’ grape (Vitis amurensis × Vitis vinifera) were used as test materials. Four varieties ovary were significant differences by means of stereomicroscope, paraffin section. The expression of ovary determining gene VvAGAMOUS (VvAG) and its development related genes VvCRABS CLAW (VvCRC) andVvAGAMOUS-LIKE 11 (VvAGL11) with similar functions during the development of different grape varieties were preliminarily explored using fluorescence quantitative test. The relationship between VvAG and VvCRC, VvAG and VvAGL11 were analyzed using Y1H assay. Our results showed that there were obvious abdominal sutures on the surface of expect for ‘Musct Hambourg’ grape, and existing poly carpels. The ovary development of ‘ShanPuTao’ and ‘GongNiang2Hao’ grape was completed when the inflorescence length was less than 1 cm, while the ‘Concord’ and ‘Musct Hambourg’ grape were fully developed when the length of inflorescence was 3–4 and 4–5 cm, respectively. VvAG and VvCRC began to express in large quantities after the formation of stamen primordia, while VvAGL11 during the forming of ovule primordia. Therefore, VvAG and VvCRC mainly regulated the development of stamens and carpels and also promote the development of ovules, while VvAGL11 major regulated the development of ovules. The promoters of VvCRC and VvAGL11 were bound by VvAG. This study provides an important theoretical basis for further research on the molecular mechanism of grape ovary development.  相似文献   
8.
孟鹏飞  郭涛  刘文 《微生物学通报》2023,50(3):1111-1122
【背景】在农田生态系统中,土壤微生物与植物互作的机制仍不清楚。【目的】进一步加强对植物-微生物互作的认识,筛选出引起不同反馈作用的关键微生物或微生物类群。【方法】采集豆科绿肥救荒野豌豆(Vicia sativa, V)、十字花科绿肥油菜(Brassica napus, N)和荒坡土壤(remnant prairie, R)驯化的田块土壤0-20 cm作为菌剂在温室进行植物-土壤反馈(plant-soil feedback,PSF)试验。土壤菌剂的接种量为10%,即有90%理化性质一致的灭菌土壤作为背景土,同时设置灭菌土壤菌剂作为对照(CK),种植玉米。每组土壤菌剂处理均分为50 mg/kg高磷(high phosphorus,HP)和5 mg/kg低磷(low phosphorus, LP)两个磷浓度处理。玉米收获后,测定产量和植株地上部磷含量,并取土壤样品进行高通量测序,解析不同养分供给情况下微生物对作物生长的反馈效应。【结果】高磷和土壤反馈效应均促进了玉米的生长。在低磷水平下,V、N和R处理的玉米地上部生物量均高于CK处理,但N处理的玉米地上部生物量增加最多(38%),且增幅显著高...  相似文献   
9.
This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE−/− mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE−/− mice. In the vascular tissue of ASBUE-treated mice, P-IKKβ, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.  相似文献   
10.
灵芝是我国著名的药用真菌,灵芝酸是其主要活性成分,具有多种药理活性。乙烯可以促进灵芝酸的生物合成,但其调控机理尚不明确。本实验利用非靶向代谢组研究发现Top 20差异代谢物中含有6种灵芝的活性成分(灵芝酸η、赤芝酸F、赤芝酸N、丹芝酸A、灵芝酸V1和灵芝酸δ),其中有4种灵芝酸(灵芝酸η、赤芝酸F、赤芝酸N和灵芝酸V1)为上调积累,2种灵芝酸(灵芝酸δ和丹芝酸A)为下调积累。通过非靶向代谢组与转录组的关联分析发现基因GL23307GL25546GL29595同时与3种灵芝酸积累显著相关,并通过启动子顺式元件预测,发现分别编码泛素蛋白和抑肽酶基因GL25546GL23307的启动子区域含有响应乙烯信号的顺式作用元件GCC-box,因此,推测这两个基因在乙烯调控灵芝酸生物合成中发挥重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号