首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   8篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   11篇
  2007年   13篇
  2006年   11篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1992年   8篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
2.
In vitro pollen germination of five species and two interspecific hybrids from the genus Brassica was tested in four media. Genetically fixed differences in the demands for optimal pollen germination among species were found. The experiments were designed to define optimal content of mineral salts, sugar, and PEG for every investigated species or hybrids. The differences found among species are discussed in relation to the evolutionary trend.  相似文献   
3.
Zwanzig Pflanzen der KlassePhragmiti-Magnocaricetea (Kennarten der einzelnen pflanzen-soziologischen Einheiten) und des VerbandesAgropyro-Rumicion crispi wurden den chemischen Analysen unterzogen. Die Pflanzenproben wurden auf den Wiesen der Trockengebiete S-Mährens und der SW-Slowakei gesammelt, u. zw. aus den pflanzensoziologisch, definierbaren Einheiten (Assoziationen der VerbändePhragmition, Caricion gracilis, Caricion rostratae undAgropyro-Rumicion). Die Resultate wurden mit der chemischen Zusammensetzung der in anderen Gebieten vorkommenden Pflanzen verglichen. Es zeigten sich Zusammenhänge zwischen der genetisch bedingten chemischen Zusammensetzung bestimmter Artengruppen und den Eigenschaften des Substrats. In diesem Sinne gibt es allgemeine Unterschiede zwischen den VerbändenCaricion gracilis undCaricion rostratae. Die Arten desAgropyro-Rumicion zeigen im Durchschnitt engere Bindung an die Gesellschaften desCnidion-Verbandes als an dasCaricion gracilis.  相似文献   
4.
5.
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.  相似文献   
6.
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.Pollen tube growth provides a unique model system for studying the role of exocytosis in cell morphogenesis. Pollen tubes are characterized by a highly rapid polarized unidirectional tip growth. Given the relative simplicity of their structure, fast growth rates, haploid genome content, and ability to grow under in vitro culture conditions, pollen tubes provide an extremely attractive system for studying cell morphogenesis. Furthermore, the growth characteristics of pollen tubes resemble those of root hairs, moss protonema, and fungal hyphae and to some extent can be paralleled to neurite growth (Chebli and Geitmann, 2007; Cheung and Wu, 2008; Guan et al., 2013; Hepler and Winship, 2015).It is well established that oscillating polarized exocytosis is fundamental for pollen tube development and determines growth rate (Bove et al., 2008; McKenna et al., 2009; Chebli et al., 2013). Exocytosis is required for the delivery of membrane and cell wall components to the growing tip. Yet, the exact location where exocytosis takes place is under debate. Ultrastructural studies showing the accumulation of vesicles at the tip suggested that exocytosis takes place at the tip (Lancelle et al., 1987; Lancelle and Hepler, 1992; Derksen et al., 1995), which was further supported by studies on the dynamics of cell wall thickness (Rojas et al., 2011), secretion of pectin methyl esterase (PME) and PME inhibitor, and staining of pectin by propidium iodide (PI; Röckel et al., 2008; Rounds et al., 2014). Conversely, based on colabeling with FM1-43 and FM4-64, it was concluded that exocytosis takes place in a subapical collar located in the transition zone between the tip and the shank, as well as at the shank, but not at the tip (Bove et al., 2008; Zonia and Munnik, 2008). In agreement, the pollen tube-specific syntaxin GFP-SYP124 was observed in the inverted cone, 10 to 25 μm away from the tip (Silva et al., 2010), and fluorescence recovery after photobleaching experiments with FM dyes also have indicated that exocytosis takes place at the subapical region (Bove et al., 2008; Moscatelli et al., 2012; Idilli et al., 2013). Yet, based on pollen tube reorientation experiments in a microfluidics device, it was concluded that growth takes place at the tip rather than at a subapical collar located in the transition zone between the apex and the shank (Sanati Nezhad et al., 2014). The tip-based growth is in agreement with exocytosis taking place at the tip. Presumably, part of the disagreement regarding the site of exocytosis resulted from the lack of intracellular markers for exocytosis (Cheung and Wu, 2008; Hepler and Winship, 2015), and as a result, the relationship between the FM dye-labeled inverted cone and exocytotic events during pollen tube growth is not fully understood.In many cell types, the process of secretory vesicles tethering and docking prior to fusion with the plasma membrane is initially mediated by an evolutionarily conserved tethering complex known as the exocyst. The exocyst is a heterooligomeric protein complex composed of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Studies originally based on budding yeast (Saccharomyces cerevisiae) have shown that the exocyst functions as an effector of Rab and Rho small GTPases that specifies the sites of vesicle docking and fusion at the plasma membrane in both space and time (Guo et al., 2001; Zhang et al., 2001). Support for the function of the exocyst in vesicle tethering was demonstrated recently by ectopic Sec3p-dependent vesicle recruitment to the mitochondria (Luo et al., 2014).Land plants contain all subunits of the exocyst complex, which were shown to form the functional complex (Elias et al., 2003; Cole et al., 2005; Synek et al., 2006; Hála et al., 2008). Studies in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) have implicated the exocyst in the regulation of pollen tube and root hair growth, seed coat deposition, response to pathogens, cytokinesis, and meristem and stigma function (Cole et al., 2005; Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010; Kulich et al., 2010; Pecenková et al., 2011; Safavian and Goring, 2013; Wu et al., 2013; Safavian et al., 2015; Zhang et al., 2016). The growth arrest of pollen tubes in sec8, sec6, sec15a, and sec5a/sec5b single and double mutants (Cole et al., 2005; Hála et al., 2008) or following treatment with the EXO70 inhibitor ENDOSIDIN2 (Zhang et al., 2016), and of root hairs in maize root hairless1 (rth1) SEC3 mutant (Wen et al., 2005), the inhibition of seed coat deposition in the sec8 and exo70A1 mutants (Kulich et al., 2010), and stigmatic papillae function in exo70A1 mutant plants (Safavian and Goring, 2013; Safavian et al., 2015) have implicated the exocyst in polarized exocytosis in plants. Given their function, it was likely that exocyst subunits could be used as markers for polarized exocytosis. Furthermore, it could also be hypothesized that, by studying the mechanisms that underlie the association of the exocyst complex with the plasma membrane, it should be possible to identify mechanisms underlying the regulation of polarized exocytosis (Guan et al., 2013). Moreover, since the interaction of exocytotic vesicles with the exocyst is transient and marks the site(s) of active exocytosis in the membrane, fluorescently labeled exocyst subunits could be used as markers for exocytosis while avoiding potential imaging artifacts stemming from pollen tube tips densely populated with vesicles.We have shown previously that the ROP effector ICR1 can interact with SEC3a and that ROPs can recruit SEC3a-ICR1 complexes to the plasma membrane (Lavy et al., 2007). However, ICR1 is not expressed in pollen tubes, suggesting that SEC3a membrane binding in these cells is likely dependent on other factors. In yeast, the interaction of Sec3p and Exo70p subunits with the plasma membrane is critical for exocyst function (He and Guo, 2009). It has been shown that the membrane binding of both Sec3p and Exo70p is facilitated by their interaction with phosphatidylinositol 4,5-bisphosphate (PIP2; He et al., 2007; Zhang et al., 2008). The yeast Exo70p interacts with PIP2 via a number of positively charged residues distributed along the protein, with the highest number located at the C-terminal end (Pleskot et al., 2015). It has been suggested that yeast Sec3p interacts with PIP2 through N-terminal basic residues (Zhang et al., 2008). These data were further corroborated by x-ray crystallography studies, which showed that the yeast Sec3p N-terminal region forms a Pleckstrin homology (PH) domain fold (Baek et al., 2010; Yamashita et al., 2010), a PIP2 interaction motif (Lemmon, 2008).The localization of the exocyst subunits has been addressed in several studies. In Arabidopsis root hairs and root epidermis cells, SEC3a-GFP was observed in puncta distributed throughout the cell (Zhang et al., 2013). Studies on the Arabidopsis EXO70 subunits EXO70E2, EXO70A1, and EXO70B1 revealed them to be localized in distinct compartments that were termed exocyst-positive organelles (Wang et al., 2010). The exocyst-positive organelles, visualized mostly by ectopic expression, were shown to be cytoplasmic double membrane organelles that can fuse with the plasma membrane and secrete their contents to the apoplast in an exosome-like manner. It is not yet known whether other exocyst subunits also are localized to the same organelles and what might be the biological function of this putative compartment (Wang et al., 2010; Lin et al., 2015). In differentiating xylem cells, two coiled-coil proteins termed VESICLE TETHERING1 and VESICLE TETHERING2 recruit EXO70A1-positive puncta to microtubules via the GOLGI COMPLEX2 protein (Oda et al., 2015). Importantly, the functionality of the XFP fusion proteins used for the localization studies described above was not tested, and in most cases, the fusion proteins were overexpressed. Therefore, the functional localization of the exocyst is still unclear.Here, we studied the function and subcellular localization of the Arabidopsis exocyst SEC3a subunit using a combination of genetics, cell biology, biochemistry, and structural modeling approaches. Our results show that SEC3a is essential for the determination of pollen tube tip germination site and growth. Partial complementation of sec3a resulted in the formation of pollen with multiple pollen tube tips. In Arabidopsis growing pollen tubes, SEC3a localization is dynamic, and it accumulates in domains of polarized secretion, at or close to the tip plasma membrane (PM). Labeling of GFP-SEC3-expressing pollen with FM4-64 revealed the spatial correlation between polarized exocytosis and endocytic recycling. Furthermore, the association of SEC3a with PM at the tip marks the direction of tube elongation and positively correlates with the deposition of PI-labeled pectins and specific anti-esterified pectin antibodies in the cell wall. In tobacco (Nicotiana tabacum), the mechanisms underlying SEC3a interaction with the PM and its subcellular distribution depend on pollen tube growth mode and involve the interaction with PIP2 through the N-terminal PH domain. Collectively, our results highlight the function of SEC3a as a polarity determinant that links between polarized exocytosis and cell morphogenesis. The correlation between exocyst function and distribution in pollen tubes provides an explanation for some of the current discrepancies regarding the localization of exocytosis.  相似文献   
7.
A computational model of a neuronal network is described which performs a fundamental task of general perception: recognition of temporal patterns in continuous and uncued neuronal spike trains. The presented network is able to recognize each pattern element (100 ms interval composed of sets of 10, 20, 30 and 40 ms interspike intervals combined in linear order) as it arrives. Its operation is based upon biologically plausible filtering mechanisms and population neurodynamics.  相似文献   
8.
CD69 is the earliest leukocyte activation antigen playing a pivotal role in cellular signaling. Here, we show that a globular C-terminal domain of CD69 belonging to C-type lectins binds calcium through Asp 171, Glu 185, and Glu 187 with K(d) approximately 54 microM. Closure of the calcium-binding site results in a conformational shift of Thr 107 and Lys 172. Interestingly, structural changes in all of these amino acids lead to the formation of high-affinity binding sites for N-acetyl-D-glucosamine. Similarly, a structural change in Glu 185 and Glu 187 contributes to a high-affinity site for N-acetyl-D-galactosamine. Site-directed mutagenesis and molecular modeling allowed us to describe the structural details of binding sites for both carbohydrates. These studies explain the importance of calcium for recognition of carbohydrates by CD69 and provide an important paradigm for the role of weak interactions in the immune system.  相似文献   
9.
With respect to the mechanism of chaperone-like activity, we examined the behavior of haptoglobin under heat shock conditions. Secondary structure changes during heat treatment were followed by circular dichroism, Raman and infrared spectroscopy. A model of the haptoglobin tetramer, based on its sequence homology with serine proteases and the CCP modules, has been proposed. Sequence regions responsible for the chaperone-like activity were not fully identical with the region that takes part in formation of the hemoglobin-haptoglobin complex. We can postulate the presence of at least two different chaperone-binding sites on each haptoglobin heavy chain.  相似文献   
10.
Sterzl I  Hampl R  Hill M  Hrdá P  Matucha P 《Steroids》2003,68(9):725-731
7alpha-Hydroxy-dehydroepiandrosterone and its 7beta-hydroxyepimer, which act as local immunomodulatory agents, dehydroepiandrosterone, cortisol, and major androgens, together with four cytokines-interleukins 2, 4, 10, and IFN-gamma, reflecting the activity of TH1 or TH2 cells present in semen, were measured in seminal plasma from 35 male donors. Cortisol, dehydroepiandrosterone, its sulfate, 7-hydroxy-dehydroepiandrosterone epimers, testosterone, and estradiol were also measured in their blood serum. Steroids and interleukins in semen as well as serum steroids and seminal interleukins were mutually correlated to find out whether a relationship between immunomodulatory steroids and cytokines influencing the immune environment does exist. A highly significant (P<0.001) positive correlation was found between seminal 7beta-hydroxy-dehydroepiandrosterone and IFN-gamma, while a negative correlation was found between cortisol and IL-10. Highly significant positive correlations were also found between serum 7alpha-hydroxy-dehydroepiandrosterone and seminal IFN-gamma and between serum 7beta-hydroxy-dehydroepiandrosterone and seminal IL-2, while a negative correlation was found between serum dehydroepiandrosterone and seminal IL-10. Different and in some instances, even contradictory findings concerning the influence of dehydroepiandrosterone and cortisol on TH1 and TH2 cytokines were observed in seminal plasma as compared to those found by others in serum. The differences can be ascribed to the different environments of mucosal and systemic immunity. Correlations between the levels of steroids and cytokines in seminal plasma did not always correspond to the correlations between given cytokines and hormones in sera. The results, however, are in agreement with our recent finding of an autonomous production of these steroids in the male reproductive tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号