首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   14篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   6篇
  2002年   4篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
1.
Folding of the yeast mitochondrial group II intron aI5c has been analysed by chemical modification of the in vitro synthesised RNA with dimethylsulfate and diethylpyrocarbonate. Computer calculations of the intron secondary structure through minimization of free energy were also performed in order to study thermodynamic properties of the intron and to relate these to data obtained from chemical modification. Comparison of the two sets of data with the current phylogenetic model structure of the intron aI5 reveals close agreement, thus lending strong support for the existence of a typical group II intron core structure comprising six neighbouring stem-loop domains. Local discrepancies between the experimental data and the model structures have been analyzed by reference to thermodynamic properties of the structure. This shows that use of the latest refined set of free energy values improves the structure calculation significantly.  相似文献   
2.
We study processes by which T-lymphocytes "learn" to discriminate "self" from "non-self". We show that intrinsic features of the T cell activation and proliferation process are sufficient to tolerize (self) reactive T-lymphocyte clones. Self vs non-self discrimination therefore develops without any down-regulatory (e.g. suppressive) interactions. T-lymphocyte clones will expand by proliferation only if the IL2 concentration is high enough to induce a proliferation rate larger than the rate of cell decay. This concentration is the proliferation threshold. Because effector T cells are short-lived the proliferation threshold must be quite high. Such high numbers of cells producing IL2 are achieved only when sufficient (memory) precursors are activated. Self and non-self antigens differ with respect the number of (memory) precursor cells they accumulate, as a result of two processes, i.e. precursor depletion and memory accumulation, and can thus be discriminated. Precursor depletion: the dynamics of long-lived precursors can cause tolerization. In neonatal circumstances precursor influx is still low, newborn cells reacting with self antigens are immediately activated, generating (few), i.e. fewer than the proliferation threshold, effectors that decay rapidly. Thus total lymphocyte numbers remain low, yielding self tolerance. Conversely, large doses of similar antigens introduced in mature systems push "their" lymphocyte clone over the proliferation threshold because a large (accumulated) precursor population is rapidly activated. Small doses are however low zone tolerized. Memory accumulation: peripheral T-lymphocyte populations in fact consist of a mixture of virgin precursors and memory cells. If the formation process of (long-lived) memory cells is taken into account and virgin precursors are made short-lived, the proliferation threshold again accounts for self non-self discrimination. Memory cells accumulate when antigenic restimulation is low; it is low when the antigen concentration and/or the antigen affinity is low. Therefore self antigens, which are present in relatively high concentrations, fail to accumulate high affinity memory cells, and are hence tolerated. Memory cells crossreacting to self antigens with low affinity, however accumulate neonatally, pushing those clones over the proliferation threshold whenever "their" high affinity antigen enters the immune system. Thus the model generates differences in the antigenicity (i.e. memory precursor frequency) of self and non-self.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
3.
We describe an automated procedure to search for consensus structures or substructures in a set of homologous or related RNA molecules. The procedure is based on the calculation of optimal and sub-optimal secondary structures using thermodynamic rules for base-pairing by energy-minimization. A linear representation of the secondary structures of the related RNAs is used so that they can be compared and classified using standard alignment and clusterings programs. We illustrate the method by means of two sets of homologous small RNAs, U2 and U3, and a set of alpha-globin mRNAs and show that biologically interesting consensus structures are obtained.  相似文献   
4.
Morphological and biochemical data were analysed from 30 greenhouse-grown populations of EuropeanSilene latifolia. Six separate character sets (flavones, seed, pollen, capsules, male and female flower morphology) were used in the analyses. There was broad-scale congruence between trends of geographic variation in most character sets, with the populations being assigned to western (or southern and western) and eastern clusters. The eastern and western clusters abut along a transition zone that runs roughly from Belgium to the northern Balkans; this zone represents a region of relatively rapid change and contains populations intermediate between the eastern and western clusters. Variation in flower morphology was weak and discordant with variation in the other character sets. The origin and maintenance of the variation pattern is discussed in terms of migrational history and hybrid zones.  相似文献   
5.
6.
Many prey species suffer from different predators in the course of their ontogeny. Hence, the alarm signal a small prey individual sends can have a different meaning than the signal a large prey individual sends, both for small and for large receivers. Larvae of Western Flower Thrips face predators that attack only small larvae, or predators that attack small larvae and large larvae. Furthermore, thrips larvae release a two‐component alarm pheromone, which varies in composition with larval age. Here, we study whether their response to alarm pheromone varies with composition of the pheromone. First, we confirmed that large and small larvae respond when nearby larvae of both sizes were prodded with a brush to induce alarm pheromone excretion. Subsequently, we tested whether thrips larvae of a given size respond differentially to alarm pheromone excreted by a small or large companion larva. We analyzed two types of behavior used in direct defense against a predator and one type of escape response. Only small (not large) larvae attempted to escape more frequently in response to excretions from a large larva. This difference in response could have been due to the alarm pheromone or to the companion larva in the vicinity. We subsequently tested for, but did not find, an effect of size of the companion larva on the behavior of the test larva when exposed to synthetic pheromone mimicking that of a large larva. Finally, we tested how pheromone composition affects antipredator behavior by exposing thrips larvae to synthetic pheromones differing in amount and ratio of the two components. Only for small larvae, we found significant changes in escape behavior with pheromone amount, and a trend with the ratio. Overall, we conclude that small thrips larvae respond differentially to alarm pheromones excreted by small and large larvae and that this differential response is due to differences in pheromone quantity and possibly also quality. Our results suggest that responses to alarm signals can vary with the chemical composition of those alarm signals.  相似文献   
7.
Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.  相似文献   
8.
9.
The division of labor between template and catalyst is a fundamental property of all living systems: DNA stores genetic information whereas proteins function as catalysts. The RNA world hypothesis, however, posits that, at the earlier stages of evolution, RNA acted as both template and catalyst. Why would such division of labor evolve in the RNA world? We investigated the evolution of DNA-like molecules, i.e. molecules that can function only as template, in minimal computational models of RNA replicator systems. In the models, RNA can function as both template-directed polymerase and template, whereas DNA can function only as template. Two classes of models were explored. In the surface models, replicators are attached to surfaces with finite diffusion. In the compartment models, replicators are compartmentalized by vesicle-like boundaries. Both models displayed the evolution of DNA and the ensuing division of labor between templates and catalysts. In the surface model, DNA provides the advantage of greater resistance against parasitic templates. However, this advantage is at least partially offset by the disadvantage of slower multiplication due to the increased complexity of the replication cycle. In the compartment model, DNA can significantly delay the intra-compartment evolution of RNA towards catalytic deterioration. These results are explained in terms of the trade-off between template and catalyst that is inherent in RNA-only replication cycles: DNA releases RNA from this trade-off by making it unnecessary for RNA to serve as template and so rendering the system more resistant against evolving parasitism. Our analysis of these simple models suggests that the lack of catalytic activity in DNA by itself can generate a sufficient selective advantage for RNA replicator systems to produce DNA. Given the widespread notion that DNA evolved owing to its superior chemical properties as a template, this study offers a novel insight into the evolutionary origin of DNA.  相似文献   
10.
A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and differentiation in combination, we obtained in-silico developmental mechanisms resembling mechanisms used in vertebrate development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号