首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3599篇
  免费   137篇
  2023年   5篇
  2022年   5篇
  2021年   27篇
  2020年   22篇
  2019年   24篇
  2018年   23篇
  2017年   29篇
  2016年   36篇
  2015年   86篇
  2014年   72篇
  2013年   183篇
  2012年   415篇
  2011年   950篇
  2010年   428篇
  2009年   490篇
  2008年   126篇
  2007年   124篇
  2006年   109篇
  2005年   101篇
  2004年   89篇
  2003年   82篇
  2002年   78篇
  2001年   7篇
  2000年   10篇
  1999年   18篇
  1998年   24篇
  1997年   19篇
  1996年   14篇
  1995年   17篇
  1994年   13篇
  1993年   15篇
  1992年   12篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1971年   1篇
排序方式: 共有3736条查询结果,搜索用时 546 毫秒
1.
Abstract Analysis of the Salmonella chromosomal region located upstream of the fimA gene (coding for the major type 1 fimbrial subunit) showed a close linkage of this gene to the folD gene (coding for the enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5, 10-methenyltetrahydrofolate cyclohydrolase), indicating that the fim gene cluster of Salmonella , unlike that of Escherichia coli , has no regulatory genes located upstream of fimA and apparently terminates with this gene. The respective locations of the fim and folD genes in the E. coli and Salmonella genetic maps suggests that the fimA-folD intergenic region of Salmonella encompasses a junctional site of a genetic rearrangement that probably originated from the different chromosomal location of the fim genes in these species.  相似文献   
2.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
4.
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.  相似文献   
5.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
6.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
7.
The role of abscisic acid (ABA) in controlling growth and developmenthas been studied in maize (Zea mays L.) coleoptile segments.Application of ABA reduces the elongation rate by about 50%and affects ion fluxes. In particular, proton extrusion is decreasedwhile potassium efflux is greatly enhanced. Apparently, ABAdoes not: seem to influence calcium influx from the apoplastinto the cytosol, but more likely it influences its efflux.Alteration of cytosolic calcium concentration may also be obtainedby increasing its release from internal stores. This possibilitymight be sustained by the increased hydrolysis of phosphatidylinositolupon ABA application. Change in the balance of ion fluxes shouldresult from regulation of transport mechanisms at the membranelevel and should produce changes in the transmembrane electricalpotential. The H+- ATPase and the ATP-dependent calcium transportactivities are both influenced by the treatment with ABA, –55%and –40%, respectively. Under these conditions [Ca2+]cytand pHcyt can be modified and, as a consequence of their regulation,they may play an important role in mediating the physiologicaland biochemical effects of ABA, acting as second intracellularmessengers. 1Research supported by National Research Council of Italy, SpecialProject RAISA, Sub-Project N. 2, Paper n. 2782.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号