首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2011年   1篇
  2009年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有9条查询结果,搜索用时 203 毫秒
1
1.
Journal of Physiology and Biochemistry - Hypoxia-inducible factor1 (HIF1) plays a pivotal role in ensuring cells adapt to low-oxygen conditions. Depletion of oxygen, a co-substrate during...  相似文献   
2.
Glomerular podocytes are the major components of the renal filtration barrier, and altered podocyte permselectivity is a key event in the pathogenesis of proteinuric conditions. Clinical conditions such as ischemia and sleep apnea and extreme physiological conditions such as high-altitude sickness are presented with renal hypoxia and are associated with significant proteinuria. Hypoxia is considered as an etiological factor in the progression of acute renal injury. A sustained increase in hypoxia-inducible factor 1α (HIF1α) is a major adaptive stimulus to the hypoxic conditions. Although the temporal association between hypoxia and proteinuria is known, the mechanism by which hypoxia elicits proteinuria remains to be investigated. Furthermore, stabilization of HIF1α is being considered as a therapeutic option to treat anemia in patients with chronic kidney disease. Therefore, in this study, we induced stabilization of HIF1α in glomerular regions in vivo and in podocytes in vitro upon exposure to cobalt chloride. The elevated HIF1α expression is concurrence with diminished expression of nephrin and podocin, podocyte foot-processes effacement, and significant proteinuria. Podocytes exposed to cobalt chloride lost their arborized morphology and cell-cell connections and also displayed cytoskeletal derangements. Elevation in expression of HIF1α is in concomitance with loss of nephrin and podocin in patients with diabetic nephropathy and chronic kidney disease. In summary, the current study suggests that HIF1α stabilization impairs podocyte function vis-à-vis glomerular permselectivity.  相似文献   
3.
alpha-Crystallin, a molecular chaperone of the eye lens, plays an important role in maintaining the transparency of the lens by preventing the aggregation/inactivation of several proteins and enzymes in addition to its structural role. alpha-Crystallin is a long-lived protein and is susceptible to several posttranslational modifications during aging, more so in certain clinical conditions such as diabetes. Nonenzymatic glycation of lens proteins and decline in the chaperone-like function of alpha-crystallin have been reported in diabetic conditions. Therefore, inhibitors of nonenzymatic protein glycation appear to be a potential target to preserve the chaperone activity of alpha-crystallin and to combat cataract under hyperglycemic conditions. In this study, we investigated the antiglycating potential of cumin in vitro and its ability to modulate the chaperone-like activity of alpha-crystallin vis-à-vis the progression of diabetic cataract in vivo. Aqueous extract of cumin was tested for its antiglycating ability against fructose-induced glycation of goat lens total soluble protein (TSP), alpha-crystallin from goat lens and a nonlenticular protein bovine serum albumin (BSA). The antiglycating potential of cumin was also investigated by feeding streptozotocin (STZ)-induced diabetic rats with diet containing 0.5% cumin powder. The aqueous extract of cumin prevented in vitro glycation of TSP, alpha-crystallin and BSA. Slit lamp examination revealed that supplementation of cumin delayed progression and maturation of STZ-induced cataract in rats. Cumin was effective in preventing glycation of TSP and alpha-crystallin in diabetic lens. Interestingly, feeding of cumin to diabetic rats not only prevented loss of chaperone activity but also attenuated the structural changes of alpha-crystallin in lens. These results indicated that cumin has antiglycating properties that may be attributed to the modulation of chaperone activity of alpha-crystallin, thus delaying cataract in STZ-induced diabetic rats.  相似文献   
4.
5.
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperfusion (I/R) and hypoxia-reoxygenation (H/R), we assessed freshly isolated tubules and in vivo injury in wild-type (WT) and Ppif(-/-) CyPD-null mice. Isolated mouse tubules developed a sustained, nonesterified fatty acid-mediated energetic deficit after H/R in vitro that could be substantially reversed by delipidated albumin and supplemental citric acid cycle substrates but was not modified by the absence of CyPD. Susceptibility of WT and Ppif(-/-) tubules to the MPT was increased by H/R but was less in normoxic and H/R Ppif(-/-) than WT tubules. Correction of the energetic deficit that developed during H/R strongly increased resistance to the MPT. Ppif(-/-) mice were resistant to I/R injury in vivo spanning a wide range of severity. The data clarify involvement of the MPT in oxygen deprivation-induced tubule cell injury by showing that the MPT does not contribute to the initial bioenergetic deficit produced by H/R but the deficit predisposes to subsequent development of the MPT, which contributes pathogenically to kidney I/R injury in vivo.  相似文献   
6.
Glomerular podocytes are integral members of the glomerular filtration barrier in the kidney and are crucial for glomerular permselectivity. These highly differentiated cells are vulnerable to an array of noxious stimuli that prevail in several glomerular diseases. Elevated circulating growth hormone (GH) levels are associated with podocyte injury and proteinuria in diabetes. However, the precise mechanism(s) by which excess GH elicits podocytopathy remains to be elucidated. Previous studies have shown that podocytes express GH receptor (GHR) and induce Notch signaling when exposed to GH. In the present study, we demonstrated that GH induces TGF-β1 signaling and provokes cell cycle reentry of otherwise quiescent podocytes. Though differentiated podocytes reenter the cell cycle in response to GH and TGF-β1, they cannot accomplish cytokinesis, despite karyokinesis. Owing to this aberrant cell cycle event, GH- or TGF-β1-treated cells remain binucleated and undergo mitotic catastrophe. Importantly, inhibition of JAK2, TGFBR1 (TGF-β receptor 1), or Notch prevented cell cycle reentry of podocytes and protected them from mitotic catastrophe associated with cell death. Inhibition of Notch activation prevents GH-dependent podocyte injury and proteinuria. Similarly, attenuation of GHR expression abated Notch activation in podocytes. Kidney biopsy sections from patients with diabetic nephropathy (DN) show activation of Notch signaling and binucleated podocytes. These data indicate that excess GH induced TGF-β1-dependent Notch1 signaling contributes to the mitotic catastrophe of podocytes. This study highlights the role of aberrant GH signaling in podocytopathy and the potential application of TGF-β1 or Notch inhibitors, as a therapeutic agent for DN.Subject terms: Podocytes, Diabetic nephropathy  相似文献   
7.
Podocytes are crucial cells of the glomerular filtration unit and plays a vital role at the interface of the blood-urine barrier. Podocyte slit-diaphragm is a modified tight junction that facilitates size and charge-dependent permselectivity. Several proteins including podocin, nephrin, CD2AP, and TRPC6 form a macromolecular assembly and constitute the slit-diaphragm. Podocin is an integral membrane protein attached to the inner membrane of the podocyte via a short transmembrane region (101–125). The cytosolic N- and C-terminus help podocin to attain a hook-like structure. Podocin shares 44% homology with stomatin family proteins and similar to the stomatin proteins, podocin was shown to associate into higher-order oligomers at the site of slit-diaphragm. However, the stoichiometry of the homo-oligomers and how it partakes in the macromolecular assemblies with other slit-diaphragm proteins remains elusive. Here we investigated the oligomeric propensity of a truncated podocin construct (residues:126–350). We show that the podocin domain majorly homo-oligomerizes into a 16-mer. Circular dichroism and fluorescence spectroscopy suggest that the 16-mer oligomer has considerable secondary structure and moderate tertiary packing.  相似文献   
8.
A new flavanol has isolated from the leaves of Rhynchosia cyanosperma and identified as 8-C-prenylquercetin 7,4′-dimethyl ether (rhynchospermin).  相似文献   
9.
A new dihydroflavonol has been isolated together with the known flavonol-O- glycosides, rutin and kaempferol-3-rutinoside, and (+)-pinitol from the leaves of R. cyanosperma Benth. The dihydroflavonol was identified as (+)-(2R, 3R)-8-C-prenyltaxifolin-7, 4′-dimethyl ether on the basis of spectroscopic studies and the compound given the trivial name tirumalin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号