首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   4篇
  2018年   11篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2004年   1篇
  2003年   2篇
排序方式: 共有58条查询结果,搜索用时 187 毫秒
1.
Journal of Plant Growth Regulation - Plant biofibers are of great economic and commercial importance. Among various fiber producing crops, cotton (Gossypium hirsutum L.), hemp (Cannabis sativa L.),...  相似文献   
2.
Journal of Plant Growth Regulation - Increased dependence on thermal power has resulted in a significant increase in the generation of fly ash (FA), which exacerbates environmental...  相似文献   
3.
4.
Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.  相似文献   
5.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   
6.
Soil-transmitted helminths (STHs) remain a major threat to the health of children throughout the world, mostly in developing nations. The aim of the present study was to determine any relationship between STHs and hemoglobin status in school children of Kashmir Valley (India). Stool and blood samples were collected from 382 male and female school children in the age group of 5-15 yr from all 6 school districts of the Kashmir Valley. Finger-prick blood samples were used to collect the hemoglobin, which was then measured on-site by Sahli's acid hematin method; stool samples were processed using both simple smear and zinc sulphate concentration methods. Of the 382 children surveyed, 299 (78.27%) were infected with Ascaris lumbricoides, Trichuris trichiura, or both. Children infected by STHs were found to have lower mean values of hemoglobin than uninfected children. The present study reveals that STHs are abundant among school children of Kashmir Valley, creating a negative effect on the hemoglobin values and indicating the necessity of implementing control measures.  相似文献   
7.
Podophyllotoxin, a well-known naturally occurring aryltetralin lignan occurs in few plant species that is used as a precursor for the chemical synthesis of the anticancer drugs like etoposide, teniposide and etopophose phosphate. The availiability of this lignan is becoming increasingly limited because of the scarce occurance of its natural sources and also because synthetic approaches for its production are still commercially unacceptable. This paper reports first time the production of podophyllotoxin by an endophytic fungus Fusarium oxysporum isolated from the medicinal plant Juniperus recurva. Further confirmation and quantification of podophyllotoxin was performed by HPLC, LC-MS, and LC-MS/MS.  相似文献   
8.
The present study demonstrated the combined effect of 24-epibrassinolide and salicylic acid against lead (Pb, 0.25, 0.50, and 0.75 mM) toxicity in Brassica juncea seedlings. Various parameters including water status, metal uptake, total water- and lipid-soluble antioxidants, metal chelator content (total thiols, protein-bound thiols, and non-protein-bound thiols), phenolic compounds (flavonoids, anthocyanins, and polyphenols), and organic acids were studied in 10-day-old seedlings. Dry matter content and the heavy metal tolerance index were reduced by 42.24 and 52.3%, respectively, in response to Pb treatment. Metal uptake, metal-chelating compounds, phenolic compounds, and organic acids were increased in Pb-treated seedlings as compared to control plants. The treatment of Pb-stressed seedlings with combination of EBL and SA resulted in enhancement of heavy metal tolerance index by 40.07%, water content by 1.84%, and relative water content by 23.45%. The total water- and lipid-soluble antioxidants were enhanced by 21.01 and 2.21%, respectively. In contrast, a significant decline in dry weight, metal uptake, thiol, and polyphenol contents was observed following the application of 24-epibrassinolide and salicylic acid. These observations indicate that Pb treatment has an adverse effect on B. juncea seedlings. However, co-application of 24-epibrassinolide and salicylic acid mitigates the negative effects of Pb, by lowering Pb metal uptake and enhancing the heavy metal tolerance index, water content, relative water content, antioxidative capacities, phenolic content, and organic acid levels.  相似文献   
9.

Soil contamination with nickel (Ni) is a persistent threat to crop production worldwide. The present study examined the putative roles of jasmonic acid (JA) in improving Ni tolerance in soybean. Our findings showed that priming of soybean seeds with JA significantly improved the growth performance of soybean when grown under excessive Ni. The enhanced Ni tolerance of soybean prompted by JA could be ascribed to its ability to regulate Ni uptake and accumulation, and to decrease Ni-induced membrane damage as evidenced by reduced levels of reactive oxygen species (ROS), malondialdehyde, lipoxygenase activity, and electrolyte leakage in Ni-stressed plants. JA also boosted redox states and antioxidant capacity in Ni-stressed plants by maintaining increased levels of ascorbate and glutathione, and enhanced activities of ROS-detoxifying enzymes compared with Ni-stressed alone plants. Additionally, methylglyoxal detoxification system was significantly upregulated in JA-primed and “JA-primed?+?Ni-stressed” plants, indicating an alleviating effect of JA on Ni-induced methylglyoxal toxicity. Our results conclude that JA-mediated regulation of Ni uptake and accumulation, and enhanced ROS metabolism by activating antioxidant defense and glyoxalase systems contributed to improved performance of soybean under excessive Ni, thereby suggesting JA as an effective stress regulator in mitigating Ni toxicity in economically important soybean, and perhaps in other crops.

  相似文献   
10.
We investigated the effects of exogenous application of jasmonic acid (JA) and nitric oxide (NO) on growth, antioxidant metabolism, physio-biochemical attributes and metabolite accumulation, in tomato (Solanum lycopersicum L.) plants exposed to salt stress. Treating the plants with NaCl (200 mM) resulted in considerable growth inhibition in terms of biomass, relative water content, and chlorophyll content, all of which were significantly improved upon application of JA and NO under both normal and NaCl-stress treatments. Salt treatment particularly 200 mM NaCl caused an apparent increase in electrolyte leakage, lipid peroxidation, and hydrogen peroxide production, which were reduced by exogenous application of JA and NO. Salt treatment triggered the induction of antioxidant system by enhancing the activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Application of JA and NO separately as well as in combination caused a significant improvement in activities of SOD, CAT, APX, and GR activities. JA and NO either applied individually or in combination boosted the flavonoid, proline and glycine betaine synthesis under NaCl treatments. In conclusion, the exogenous application of JA and NO protected tomato plants from NaCl-induced damage by up-regulating the antioxidant metabolism, osmolyte synthesis, and metabolite accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号