首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   13篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   17篇
  2018年   11篇
  2017年   9篇
  2016年   12篇
  2015年   10篇
  2014年   12篇
  2013年   14篇
  2012年   20篇
  2011年   9篇
  2010年   3篇
  2009年   10篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有170条查询结果,搜索用时 250 毫秒
1.
Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPOM) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPOP) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPOP bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPOP (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPOM (21%). The cytoprotective effect of the asialo-rhuEPOP was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.  相似文献   
2.
3.
Ahmadi  Tayebeh  Shabani  Leila  Sabzalian  Mohammad R. 《Protoplasma》2020,257(4):1231-1242

The popularity of lemon balm in conventional medicine is suggested by the existence of two groups of compounds, namely essential oil and phenylpropanoids pathway derivatives. One of the promising approaches to improve tolerance to drought stress induced oxidative damage in seedlings grown in greenhouses and plant growth chambers is replacing the traditional and high-cost light technologies by recently developed light emitting diodes (LED). In this experiment, we analyzed the role of various LED lights including red (R), blue (B), red (70%) + blue (30%) (RB), and white (W) as well as normal greenhouse light (as control) to stimulate defense mechanisms against drought stress in two genotypes of Melissa officinalis L. The present study demonstrates that pre-treatment with LEDs with high-intensity output for 4 weeks alleviated harmful effects of drought stress in the two genotypes. Under drought stress, RB LED pre-treated plantlets of the two genotypes exhibited the highest relative growth index of shoot and root and total phenolic and anthocyanin content compared to those irradiated with other LEDs and greenhouse lights. The highest amount of malondialdehyde level was detected in R LED exposed plants. In response to drought, LED-exposed plants especially RB light-irradiated plants of the two genotypes maintained significantly higher antioxidant and phenylalanine ammonia-lyase (PAL) enzyme activities and higher expression level of the PAL1 and 4CL-1 genes compared to those irradiated with greenhouse light. We concluded that RB LED light provides a better growth condition and resistance to drought stress for the two genotypes of lemon balm by the highest antioxidant activity and the least amount of damage to the cell membranes. Our data suggest that LED light pre-treatments as moderate stress activate antioxidant systems, enhance the scavenging of ROS and induce drought stress tolerance in the two genotypes of lemon balm plants.

  相似文献   
4.

Background and Scope

Weight loss success is dependent on the ability to refrain from regaining the lost weight in time. This feature was shown to be largely variable among individuals, and these differences, with their underlying molecular processes, are diverse and not completely elucidated. Altered plasma metabolites concentration could partly explain weight loss maintenance mechanisms. In the present work, a systems biology approach has been applied to investigate the potential mechanisms involved in weight loss maintenance within the Diogenes weight-loss intervention study.

Methods and Results

A genome wide association study identified SNPs associated with plasma glycine levels within the CPS1 (Carbamoyl-Phosphate Synthase 1) gene (rs10206976, p-value = 4.709e-11 and rs12613336, p-value = 1.368e-08). Furthermore, gene expression in the adipose tissue showed that CPS1 expression levels were associated with successful weight maintenance and with several SNPs within CPS1 (cis-eQTL). In order to contextualize these results, a gene-metabolite interaction network of CPS1 and glycine has been built and analyzed, showing functional enrichment in genes involved in lipid metabolism and one carbon pool by folate pathways.

Conclusions

CPS1 is the rate-limiting enzyme for the urea cycle, catalyzing carbamoyl phosphate from ammonia and bicarbonate in the mitochondria. Glycine and CPS1 are connected through the one-carbon pool by the folate pathway and the urea cycle. Furthermore, glycine could be linked to metabolic health and insulin sensitivity through the betaine osmolyte. These considerations, and the results from the present study, highlight a possible role of CPS1 and related pathways in weight loss maintenance, suggesting that it might be partly genetically determined in humans.  相似文献   
5.
In this paper, a most sensitive electrochemical biosensor for detection of prostate‐specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti‐Total PSA monoclonal antibody, and anti‐Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19‐9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.  相似文献   
6.
Melatonin is a multifunctional hormone that has long been known for its antitumoral effects. An advantage of the application of melatonin in cancer therapy is its ability to differentially influence tumors from normal cells. In this review, the roles of melatonin adjuvant therapy in human cancer are discussed. Combination of melatonin with chemotherapy could provide synergistic antitumoral outcomes and resolve drug resistance in affected patients. This combination reduces the dosage for chemotherapeutic agents with the subsequent attenuation of side effects related to these drugs on normal cells around tumor and on healthy organs. The combination therapy increases the rate of survival and improves the quality of life in affected patients. Cancer cell viability is reduced after application of the combinational melatonin therapy. Melatonin does all these functions by adjusting the signals involved in cancer progression, re-establishing the dark/light circadian rhythm, and disrupting the redox system for cancer cells. To achieve effective therapeutic outcomes, melatonin concentration along with the time of incubation for this indoleamine needs to be adjusted. Importantly, a special focus is required to be made on choosing an appropriate chemotherapy agent for using in combination with melatonin. Because of different sensitivities of cancer cells for melatonin combination therapy, cancer-specific targeted therapy is also needed to be considered. For this review, the PubMed database was searched for relevant articles based on the quality of journals, the novelty of articles published by the journals, and the number of citations per year focusing only on human cancers.  相似文献   
7.
8.
The koala's Phascolarctos cinereus distribution is currently restricted to eastern and south‐eastern Australia. However, fossil records dating from 70 ± 4 ka (ka = 103 yr) from south‐western Australia and the Nullarbor Plain are evidence of subpopulation extinctions in the southwest at least after the Last Interglacial (~128–116 ka). We hypothesize that koala sub‐population extinctions resulted from the eastward retraction of the koala's main browse species in response to unsuitable climatic conditions. We further posit a general reduction in the distribution of main koala‐browse trees in the near future in response climate change. We modelled 60 koala‐browse species and constructed a set of correlative species distribution models for five time periods: Last Interglacial (~128–116 ka), Last Glacial Maximum (~23–19 ka), Mid‐Holocene (~7–5 ka), present (interpolations of observed data, representative of 1960–1990), and 2070. We based our projections on five hindcasts and one forecast of climatic variables extracted from WorldClim based on two general circulation models (considering the most pessimistic scenario of high greenhouse‐gas emissions) and topsoil clay fraction. We used 17 dates of koala fossil specimens identified as reliable from 70 (± 4) to 535 (± 49) ka, with the last appearance of koalas at 70 ka in the southwest. The main simulated koala‐browse species were at their greatest modelled extent of suitability during the Last Glacial Maximum, with the greatest loss of koala habitat occurring between the Mid‐Holocene and the present. We predict a similar habitat loss between the present and 2070. The spatial patterns of habitat change support our hypothesis that koala extinctions in the southwest, Nullarbor Plain and central South Australia resulted from the eastward retraction of the dominant koala‐browse species in response to long‐term climate changes. Future climate patterns will likely increase the extinction risk of koalas in their remaining eastern ranges.  相似文献   
9.
BackgroundLeptospirosis is a worldwide zoonotic disease and a serious, under-reported public health problem, particularly in rural areas of Tanzania. In the Katavi-Rukwa ecosystem, humans, livestock and wildlife live in close proximity, which exposes them to the risk of a number of zoonotic infectious diseases, including leptospirosis.ConclusionsThe results of this study demonstrate that leptospiral antibodies are widely prevalent in humans, livestock and wildlife from the Katavi-Rukwa ecosystem. The disease poses a serious economic and public health threat in the study area. This epidemiological study provides information on circulating serogroups, which will be essential in designing intervention measures to reduce the risk of disease transmission.  相似文献   
10.
Elevated levels of the second messenger c‐di‐GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food‐borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface‐bound. Secreted carbohydrates represent exclusively cell‐wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a β‐1,4‐linked N‐acetylmannosamine chain decorated with terminal α‐1,6‐linked galactose. All genes of the pssAE operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS‐specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS‐mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c‐di‐GMP‐dependent EPS production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号