首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   6篇
  2011年   11篇
  2010年   3篇
  2009年   1篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有131条查询结果,搜索用时 406 毫秒
1.
Leaves of Spinacia oleracea inoculated with tobacco mosaic virus (TMV) strain PV230 develop mild chlorotic and mosaic symptoms of infection. Thylakoid membranes isolated from these infected leaves showed a reduced Fv/Fm ratio for chlorophyll fluorescence kinetics, at 25 degrees C. The photosystem II (PS II)-mediated electron-transport rate was inhibited 50%, whereas PS I activity was unaffected by virus infection. Protein analysis indicated that TMV coat protein was associated with thylakoids, in particular with the PS II fraction. The results demonstrate that TMV-infected S. oleracea shows inhibition of photosynthetic electron transport through PS II. We propose that the inhibition of photosynthetic activity results from the association of viral coat protein with the PS II complex.  相似文献   
2.
3.
4.
In order to accommodate the physiologically incompatible processes of photosynthesis and nitrogen fixation within the same cell, unicellular nitrogen-fixing cyanobacteria have to maintain a dynamic metabolic profile in the light as well as the dark phase of a diel cycle. The transition from the photosynthetic to the nitrogen-fixing phase is marked by the onset of various biochemical and regulatory responses, which prime the intracellular environment for nitrogenase activity. Cellular respiration plays an important role during this transition, quenching the oxygen generated by photosynthesis and by providing energy necessary for the process. Although the underlying principles of nitrogen fixation predict unicellular nitrogen-fixing cyanobacteria to function in a certain way, significant variations are observed in the diazotrophic behavior of these microbes. In an effort to elucidate the underlying differences and similarities that govern the nitrogen-fixing ability of unicellular diazotrophic cyanobacteria, we analyzed six members of the genus Cyanothece. Cyanothece sp. ATCC 51142, a member of this genus, has been shown to perform efficient aerobic nitrogen fixation and hydrogen production. Our study revealed significant differences in the patterns of respiration and nitrogen fixation among the Cyanothece spp. strains that were grown under identical culture conditions, suggesting that these processes are not solely controlled by cues from the diurnal cycle but that strain-specific intracellular metabolic signals play a major role. Despite these inherent differences, the ability to perform high rates of aerobic nitrogen fixation and hydrogen production appears to be a characteristic of this genus.Nitrogen fixation is an important global phenomenon by which molecular nitrogen, one of the most abundant components of the earth’s atmosphere, is converted into a more reduced form suitable for incorporation into living systems. The majority of this nitrogen fixation is achieved by biological means through the activity of microorganisms (Burris and Roberts, 1993; Raymond et al., 2004; Rubio and Ludden, 2008). This process is energy intensive, and nitrogenase, the enzyme complex involved in the biological nitrogen fixation reaction, is generally known to be extremely sensitive to oxygen (Robson and Postgate, 1980; Hill et al., 1981; Berman-Frank et al., 2005). Thus, most microbes participating in this process fix nitrogen only when suitable anaerobic or microaerobic conditions are established in an otherwise oxygen-rich environment. However, some nitrogen-fixing (diazotrophic) microbes have the advantage of being able to fix nitrogen in aerobic environments. Outstanding among these are the photosynthetic prokaryotes called cyanobacteria, an extremely successful group of microbes with plant-like traits. These microbes are considered to be the progenitors of plant chloroplasts. Cyanobacteria perform both oxygen-evolving photosynthesis and oxygen-sensitive nitrogen fixation, thereby providing a platform to power the most metabolically expensive biological process (Simpson and Burris, 1984) with solar energy.Among the nitrogen-fixing cyanobacteria, filamentous strains have been extensively studied for their contribution to the nitrogen cycle in marine and terrestrial ecosystems (Mulligan and Haselkorn, 1989; Kaneko et al., 2001; Meeks et al., 2001; Sañudo-Wilhelmy et al., 2001; Wong and Meeks, 2001; Gomez et al., 2005). Some of these filamentous strains develop specialized cells called heterocysts that allow the spatial segregation of photosynthesis and nitrogen fixation. These heterocysts also have higher rates of respiratory oxygen consumption, which results in a virtually anoxic environment conducive for the nitrogenase enzyme (Bergman et al., 1997). All heterocystous strains are known to fix nitrogen aerobically. In contrast, nonheterocystous cyanobacteria lack any specialized oxygen-free compartments and often require incubation under microoxic or anaerobic conditions for nitrogen fixation (Rippka and Waterbury, 1977; Rippka et al., 1979; Brass et al., 1992). However, some nonheterocystous cyanobacterial strains can fix nitrogen under aerobic conditions. These include some filamentous genera like Trichodesmium spp., Lyngbya spp., and Oscillatoria spp. (Jones, 1990; Janson et al., 1994; Finzi-Hart et al., 2009) as well as unicellular genera like Gloeothece spp. and Cyanothece spp. (Wyatt and Silvey, 1969; Rippka and Waterbury, 1977; Huang and Chow, 1988; Van Ni et al., 1988; Schütz et al., 2004).In comparison with filamentous cyanobacteria, which have long been recognized for their nitrogen-fixing ability, the importance of unicellular cyanobacteria as key components of the environmental nitrogen cycle has only been recently uncovered. Studies over the last decade have established unicellular strains like Crocosphaera spp., Cyanothece spp., and UCYN-A as important players in the marine nitrogen cycle (Zehr et al., 2001; Montoya et al., 2004; Zehr, 2011). Since unicellular diazotrophic cyanobacteria utilize the same cellular platform for photosynthesis and nitrogen fixation, they are required to adjust their cellular metabolism to accommodate these two antagonistic processes. Systems-level studies in the unicellular genus Cyanothece have revealed a temporal separation of the two processes, photosynthesis occurring during the day and nitrogen fixation occurring at night (Stöckel et al., 2008; Toepel et al., 2008; Welsh et al., 2008). Cellular respiration plays a critical role during the transition from one phase to the next, rapidly freeing the intracellular environment of the photosynthetically generated oxygen and rendering it conducive for the induction of nitrogenase activity. In addition, respiration also sustains the process of nitrogen fixation, not only by maintaining a low-oxygen environment required for the functioning of the nitrogenase enzyme but also by mobilizing the stored solar energy to fuel this energy-intensive process.Unicellular diazotrophs exhibit great diversity in the efficiency of nitrogen fixation as well as in the physiological regulation of the process. For instance, members of the genus Gloeothece fix nitrogen aerobically during the day, but at 0% dissolved oxygen concentration, nitrogen fixation is shifted entirely to the dark period (Ortega-Calvo and Stal, 1991; Taniuchi et al., 2008). In contrast, some Synechococcus spp. strains can fix nitrogen only when incubated under anoxic conditions (Steunou et al., 2006). Members of the genus Cyanothece have been reported to engage in both aerobic and anaerobic nitrogen fixation, with nitrogenase activity peaking during the night (Reddy et al., 1993; Bergman et al., 1997; Turner et al., 2001). This suggests that, in addition to the regulations imposed by the diurnal cycle, strain-specific intracellular cues govern the process of nitrogen fixation in unicellular cyanobacteria, which may vary according to the genotype or the ecotype of the strains.Members of the unicellular cyanobacterial genus Cyanothece are diazotrophs that thrive in marine as well as terrestrial environments. This genus was originally grouped together with Synechococcus spp. but was later separated on the basis of distinct morphological and biochemical differences between the two genera (Komárek, 1976; Rippka and Cohen-Bazire, 1983). Some of the features that define the largely heterogeneous genus Cyanothece are oval to cylindrical cells, larger than 3 µm in size (they can be as large as 24 µm in diameter), radially arranged thylakoids, and a mucilaginous layer surrounding the cells (Komárek and Cepák, 1998; Porta et al., 2000; Liberton et al., 2011).It was recently demonstrated that Cyanothece sp. ATCC 51142, a member of the genus Cyanothece, has the unique ability to produce molecular hydrogen at exceptionally high rates under aerobic conditions (Bandyopadhyay et al., 2010). This striking observation was attributed to the nitrogenase enzyme system of Cyanothece sp. ATCC 51142. Our study also indicated that high rates of respiration in this strain might contribute to its nitrogenase-mediated aerobic hydrogen production. Glycerol was found to be an efficient source of reductants and energy for this process. In an effort to investigate if this atypical cyanobacterial trait was a characteristic of the genus Cyanothece, five additional Cyanothece spp. strains from different ecological habitats were sequenced to completion. The six strains display more than 90% identity in their 16S ribosomal RNA sequence but exhibit striking variability with respect to their genome sizes (with the largest genome being 7.8 Mb and the smallest being 4.4 Mb), the number of plasmids, and the percentage of pseudogenes (Bandyopadhyay et al., 2011). In addition, two of the strains possess linear chromosomal elements, features not known to occur in any other photosynthetic bacteria sequenced to date, which may impart niche-specific advantages to these strains. Analysis of the genome sequence of the Cyanothece spp. strains showed the presence of a nitrogenase gene cluster in all five strains, and preliminary analysis showed that four of the five strains were capable of aerobic nitrogen fixation and hydrogen production (Bandyopadhyay et al., 2011). In this study, we have focused on the patterns of nitrogen fixation and respiration in six different Cyanothece spp. strains in an effort to elucidate the underlying differences and similarities in these processes in unicellular diazotrophic strains with similar genotypic but varied ecological backgrounds. Our study reveals inherent differences in the regulation of these processes, which are likely controlled by strain-specific cellular signals. However, despite the differences in the patterns of nitrogenase activity, aerobic nitrogen fixation and hydrogen production was found to be a characteristic of this genus, with most members exhibiting nitrogenase-mediated hydrogen production at rates higher than any other wild-type cyanobacterial strain.  相似文献   
5.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   
6.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   
7.
Ivleva  N. B.  Sidoruk  K. V.  Pakrasi  H. B.  Shestakov  S. V. 《Microbiology》2002,71(4):433-437
To understand the functional role of CtpB and CtpC proteins, which are similar to the C-terminal processing CtpA peptidase, the effect of the insertional inactivation of the ctpB and ctpCgenes on the phenotypic characteristics of Synechocystis sp. PCC 6803 was studied. The inactivation of the ctpC gene was found to be lethal to the cyanobacterium, which indicates a vital role of the CtpC protein. The mutant with the inactivated ctpB gene had the same photosynthetic characteristics as the wild-type strain. The double mutant ctpActpB with the two deleted genes was identical, in the phenotypic characteristics, to the mutant with a knock-out mutation in the ctpAgene, which was unable to grow photoautotrophically. The data obtained suggest that, in spite of the high similarity of the Ctp proteins, they serve different functions in Synechocystis sp. PCC 6803 cells and cannot compensate for each other.  相似文献   
8.
Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem II (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). PsbE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as PsbE, F, H, I, L, M, U, V and X, the presence of PsbY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.  相似文献   
9.
The ndhD gene encodes a membrane protein component of NAD(P)H dehydrogenase. The genome of Synechocystis sp. PCC6803 contains 6 ndhD genes. Three mutants were constructed by disrupting highly homologous ndhD genes in pairs. Only the DeltandhD1/DeltandhD2 (DeltandhD1/D2) mutant was unable to grow under photoheterotrophic conditions and exhibited low respiration rate, although the mutant grew normally under photoautotrophic conditions in air. The DeltandhD3/DeltandhD4 (DeltandhD3/D4) mutant grew very slowly in air and did not take up CO(2). The results demonstrated the presence of two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis PCC6803 cells. TheDeltandhD5/DeltandhD6 (DeltandhD5/D6) mutant grew like the wild-type strain. Under far-red light (>710 nm), the level of P700(+) was high in DeltandhD1/D2 and M55 (ndhB-less mutant) at low intensities. The capacity of Q(A) (tightly bound plastoquinone) reduction by plastoquinone pool, as measured by the fluorescence increase in darkness upon addition of KCN, was much less in DeltandhD1/D2 and M55 than in DeltandhD3/D4 and DeltandhD5/D6. We conclude that electrons from NADPH are transferred to the plastoquinone pool mainly by the NdhD1.NdhD2 type of NAD(P)H dehydrogenases.  相似文献   
10.
A new broad-host-range plasmid, pSL1211, was constructed for the over-expression of genes in Synechocystis sp. strain PCC 6803. The plasmid was derived from RSF1010 and an Escherichia coli over-expression plasmid, pTrcHisC. Over-expressed protein is made with a removable N-terminal histidine tag. The plasmid was used to over-express the phrA gene and purify the gene product from Synechocystis sp. strain PCC 6803. PhrA is the major ultraviolet-light-resistant factor in the cyanobacterium. The purified PhrA protein exhibited an optical absorption spectrum similar to that of the cyclobutane pyrimidine dimer (CPD) DNA photolyase from Synechocuccus sp. strain PCC 6301 (Anacystis nidulans). Mass spectrometry analysis of PhrA indicated that the protein contains 8-hydroxy-5-deazariboflavin and flavin adenine dinucleotide (FADH2) as cofactors. PhrA repairs only cyclobutane pyrimidine dimer but not pyrimidine (6-4) pyrimidinone photoproducts. On the basis of these results, the PhrA protein is classified as a class I, HDF-type, CPD DNA photolyase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号