首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A novel water-soluble polysaccharide fraction, CME-1, with a molecular mass of 27.6 kDa and containing mannose and galactose in a respective ratio of 4:6, was prepared from Cordyceps sinensis mycelia and identified by NMR and GC-MS. In the current study, we examined whether CME-1 has anti-inflammatory effects in RAW264.7 cells. The ability of CME-1 to inhibit H(2)O(2)-induced cell death in RAW264.7 cells was assessed by using an MTT assay and annexin V/propidium iodide double staining; we found that CME-1 protected cells against H(2)O(2)-induced injury. H(2)O(2)-induced intracellular oxidative stress and mitochondrial membrane depolarization were also diminished with CME-1 treatment. We evaluated the hydroxyl radical scavenging ability of CME-1 by using the DMPO-electron spin resonance technique, which indicated that CME-1 acts as an intracellular antioxidant in a concentration-dependent manner through a mechanism other than its scavenging activity. Activities of both neutral and acid sphingomyelinases (SMases) were assessed in vitro, and results showed that the CME-1 inhibited activities of both neutral and acid SMases in a concentration-dependent manner. CME-1 reduced H(2)O(2) treatment-elevated C16- and C18-ceramide levels measured by LC/MS/MS in RAW264.7 cells. Results suggest that CME-1 protects RAW264.7 cells against oxidative stress through inhibition of SMase activity and reduction of C16- and C18-ceramide levels.  相似文献   
2.
Patients with type 2 diabetes are at a high risk for acute cardiovascular events, which usually arise from the rupture of a vulnerable coronary lesion characterized by specific morphological plaque features. Thus, the identification of vulnerable plaques is of utmost clinical importance in patients with type 2 diabetes. However, there is currently no scoring system available to identify vulnerable lesions based on plaque characteristics. Thus, we aimed to characterize the diagnostic value of optical coherence tomography (OCT) - derived lesion characteristics to quantify plaque vulnerability both as individual parameters and when combined to a score in patients with type 2 diabetes. OCT was performed in the coronary culprit lesions of 112 patients with type 2 diabetes. The score, which quantifies plaque vulnerability, was defined as the predicted probability that a lesion is the cause for an acute coronary syndrome (ACS) (vs. stable angina (SAP)) based on its specific plaque morphology. Multivariable logistic regression analysis demonstrated that plaque vulnerability was independently predicted by the minimal fibrous cap thickness overlying a lesion’s lipid core (odds ratio (OR) per 10 μm 0.478, p = 0.002), the medium lipid arc (OR per 90° 13.997, p < 0.001), the presence of macrophages (OR 4.797, p = 0.015) and the lipid plaque length (OR 1.290, p = 0.098). Receiver-operating-characteristics (ROC) analyses demonstrated that these parameters combined to a score demonstrate an excellent diagnostic efficiency to identify culprit lesions of patients with ACS (vs. SAP, AUC 0.90, 95% CI 0.84-0.96). This is the first study to present a score to quantify lesion vulnerability in patients with type 2 diabetes. This score may be a valuable adjunct in decision-making and useful in guiding coronary interventions.  相似文献   
3.
The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号