首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   45篇
  2019年   5篇
  2017年   6篇
  2016年   9篇
  2015年   15篇
  2014年   9篇
  2013年   11篇
  2012年   13篇
  2011年   17篇
  2010年   8篇
  2009年   13篇
  2008年   18篇
  2007年   14篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   14篇
  2002年   14篇
  2001年   12篇
  2000年   30篇
  1999年   25篇
  1998年   7篇
  1996年   5篇
  1995年   7篇
  1994年   12篇
  1993年   7篇
  1992年   20篇
  1991年   11篇
  1990年   14篇
  1989年   9篇
  1988年   5篇
  1987年   12篇
  1986年   12篇
  1985年   13篇
  1984年   10篇
  1983年   6篇
  1981年   9篇
  1980年   4篇
  1978年   4篇
  1977年   8篇
  1976年   8篇
  1974年   12篇
  1973年   10篇
  1972年   10篇
  1971年   7篇
  1970年   10篇
  1969年   7篇
  1968年   7篇
  1967年   8篇
  1966年   4篇
  1965年   10篇
排序方式: 共有550条查询结果,搜索用时 15 毫秒
1.
2.
3.
We have reported previously that aminophylline has an ameliorating effect on the course and severity of glycerol-induced myoglobinuric acute renal failure in rats. Since aminophylline dissociates into theophylline in biological fluids and since theophylline is an adenosine receptor antagonist, we attributed the ameliorating effects to antagonism of the hemodynamic effects of endogenous adenosine. However, theophylline blocks tubuloglomerular feedback and produces natriuresis, and either of these effects might have accounted for the beneficial effects in acute renal failure. Therefore, this study was designed to further characterize the effects of theophylline in glycerol-induced acute renal failure in rats. Aminophylline had dose-dependent beneficial effects, as judged by the peak serum creatinine during the 3 days following induction of acute renal failure, by the number of animals with peak serum creatinine greater than 1 mg/dL, and by the mortality rate. Both furosemide and theophylline block tubuloglomerular feedback and produce natriuresis, but aminophylline had protective effects, whereas furosemide actually increased mortality, compared with aminophylline, following induction of myoglobinuric acute renal failure. Therefore, aminophylline's protective effects are independent of tubuloglomerular feedback and natriuresis. These results offer further support for the hypothesis that adenosine-induced hemodynamic changes play a pathogenic role in glycerol-induced acute renal failure in rats.  相似文献   
4.
Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [35S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min-1 (mg of protein)-1, respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa3-type enzyme from the properties of its redox-active and EDTA-resistant Cu2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa3-type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa3-type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme (EC 1.9.3.1).  相似文献   
5.
An increased maximum velocity of shortening (Vmax) and increased shortening ability (delta Lmax) have been reported for caudal arterial smooth muscle from 16- to 18-week-old spontaneously hypertensive rats (SHR) compared with age-matched Wistar-Kyoto (WKY) control rats. It is known that hypertension results in hypertrophy of vascular smooth muscle. It is plausible that the faster Vmax of 16- to 18-week-old SHR arterial smooth muscle may slow down with age due to hypertrophy. The force-velocity (F-V) study done previously on caudal arterial strips from 16- to 18-week-old SHR and WKY rats was repeated on preparations from 28- to 31-week-old rats. An electromagnetic muscle lever was employed in recording force-velocity data. Analysis of these data revealed that the 28- to 31-week-old SHR (n = 7) mean F-V curve was not different from the 28- to 31-week-old WKY (n = 5) mean F-V curve (p greater than 0.05), and the shortening ability of 28- to 31-week-old SHR arterial muscle was significantly depressed compared with 28- to 31-week-old WKY arterial muscle (p less than 0.01). In conclusion, (i) although Vmax is faster in younger (16- to 18-week-old) SHR compared with age-matched WKY caudal arterial smooth muscle, SHR Vmax is not different from WKY Vmax in the older (28- to 31-week-old) rats. (ii) Shortening ability is greater in 16- to 18-week-old SHR caudal arterial strips compared with 16- to 18-week-old WKY strips, but is significantly depressed in 28- to 31-week-old SHR compared with 28- to 31-week-old WKY preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency.  相似文献   
7.
Increased total peripheral resistance is the cardinal haemodynamic disorder in essential hypertension. This could be secondary to alterations in the mechanical properties of vascular smooth muscle. Adequate study has not been made of the force-velocity (F-V) relationship in hypertensive arterial smooth muscle. Increased shortening in arterial smooth muscle would result in greater narrowing of arteries. The objectives of this investigation were to see if there is (i) increased shortening or increased maximum change in muscle length (delta Lmax where L stands for muscle length), (ii) an increased maximum velocity of shortening (Vmax) measured in l omicron per second where l omicron is the optimal muscle length for tension development, and (iii) a difference in maximum isometric tension (P omicron) developed in spontaneously hypertensive rat (SHR; N = 6) compared with normotensive Wistar Kyoto rat (WKY;N = 5) caudal artery strips. An electromagnetic muscle lever was employed in recording force-velocity data. Analysis of these data revealed the following: (a) the SHR mean P omicron of 6.21 +/- 1.01 N/cm2 was not different from the mean WKY P omicron of 6.97 +/- 1.64 N/cm2 (p greater than 0.05); (b) the SHR preparations showed greater shortening for all loads imposed; (c) the SHR Vmax of 0.016 l omicron/s was greater than the WKY Vmax of 0.013 l omicron/s (p less than 0.05). This study provides evidence that while hypertensive arterial smooth muscle is not able to produce more force than normotensive arterial smooth muscle, it is capable of faster and greater shortening. The latter could result in increased narrowing of hypertensive arteries and increased blood pressure.  相似文献   
8.
Alterations of smooth muscle function can just as easily stem from mechanical alterations in its ability to relax as from alteration in contraction. Since a failure of arterial smooth muscle to relax may contribute to the development of hypertension, we felt it necessary to study the relaxation process in greater depth. The effect of load on the time course of relaxation of rat caudal artery smooth muscle was analyzed either by comparing afterloaded contractions against various loads or by imposing abrupt alterations in load. Unlike mammalian striated muscles in which relaxation was reported sensitive to loading conditions, relaxation in the smooth muscle of the rat caudal artery (n = 17) was found to be largely independent of loading conditions. This type of relaxation has been termed "inactivation-dependent" relaxation; it is typical of muscle tissue in which the calcium sequestering apparatus is poorly developed. Our results suggest that calcium resequestration, or some biochemical process downstream to it, is the rate-limiting step during relaxation in arterial smooth muscle and that this is not qualitatively different for hypertensive arterial smooth muscle. These analytic techniques were used in the study of relaxation of hypertensive vessels. Quantitative analysis of the relaxation curves showed that both isometric and isotonic relaxation time was prolonged in hypertensive arterial smooth muscle. Prolonged isotonic relaxation indicates that hypertensive arteries remain narrowed for prolonged periods compared with normotensive vessels. Such narrowed vessels may be a factor in the increased total peripheral resistance seen in genetic hypertension.  相似文献   
9.
10.
Using liposomes we have demonstrated an electron transfer between tocopherol (vitamin E) and cytochrome c. Reduced cytochrome c protects vitamin E from oxidation induced either directly by ultraviolet light or indirectly by soybean lipoxygenase-catalyzed oxidation of arachidonic acid. Oxidized cytochrome c is reduced by tocopherol and tocopherol homologues (chromanols) resulting in accumulation of tocopheroxyl radicals which we detected by ESR. The peak height of the ESR spectrum of tocopheroxyl radicals (which is proportional to the amount of radical present) is proportional to the ratio of reduced to oxidized cytochrome c. In mitochondrial membranes succinate-cytochrome c reduction is inhibited by antimycin A. Addition of exogenous chromanols facilitates a by-pass of the antimycin A blocked electron pathway, and succinate-dependent cytochrome c reductase activity is restored. Cytochrome c may act as a water-soluble complement to the lipid-soluble ubiquinol in regenerating mitochondrial tocopherol from tocopheroxyl radical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号