首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  1998年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有7条查询结果,搜索用时 281 毫秒
1
1.
Spruce (Picea abies (L.) Karst.) seedlings were asepticallycultivated and the effects of different N-nutrition on net uptakeand reduction of nitrate were investigated. The characteristicsof nitrate uptake were calculated, Ks as 0?2 mol m–3 andVmax as 18 µmol g–1 d–1. Low pH, and Al3+ in the medium caused adecrease in nitrate uptake rate. An in vivo assay was set upwhich allowed the measurement of NRA in both roots and needlesof spruce seedlings. The in vivo nitrate reductase activitywas repressed by ammonium and stimulated by nitrate. Nitratereduction was similar to nitrate uptake, negatively affectedby low pH and ammonium. Therefore, a limited N-supply to spruceseemed to occur when pH was low in the rhizosphere combinedwith the presence of Al3+ and . Key words: Spruce, nitrate uptake, nitrate reduction  相似文献   
2.
Following a precultivation with pedospheric nitrogen nutrition, Ricinus plants were supplied with nitrogen solely by spraying nitrate or ammonium solution onto the leaves during the experimental period. The chemical composition of tissues, xylem and phloem exudates was determined and on the basis of the previously determined nitrogen flows (Peuke et al., New Phytologist (1998), 138 , 657–687) the flows of potassium, sodium, magnesium, calcium, chloride and ABA were modelled. These data, which permit quantification of net-uptake, transport in xylem and phloem, and utilization in shoot and root, were compared with results obtained in plants with pedospherically-supplied nitrate or ammonium and data in the literature. Although the overall effects on the chemical composition of supplying ammonium to the leaves were not as pronounced as in pedospherically supplied plants, there were some typical responses of plants fed with ammonium (ammonium syndrome). In particular, in ammonium-sprayed plants uptake and transport of magnesium decreased and chloride uptake was increased compared with nitrate-sprayed plants. Furthermore, acropetal ABA transport in the xylem in ammonium-sprayed Ricinus was threefold higher than in nitrate-sprayed plants. Additionally, concentrations of anions were more or less increased in tissues, particularly in the roots, and transport fluids. The overall signal from ammonium-sprayed leaves without a direct effect of ammonium ions on uptake and transport systems in the root is discussed.  相似文献   
3.
4.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   
5.
Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non‐invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ13C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.  相似文献   
6.
We compared three transgenic poplar lines over‐expressing the bacterial γ‐glutamylcysteine synthetase (GSH1) targeted to plastids. Lines Lggs6 and Lggs12 have two copies, while line Lggs20 has three copies of the transgene. The three lines differ in their expression levels of the transgene and in the accumulation of γ‐glutamylcysteine (γ‐EC) and glutathione (GSH) in leaves, roots and phloem exudates. The lowest transgene expression level was observed in line Lggs6 which showed an increased growth, an enhanced rate of photosynthesis and a decreased excitation pressure (1‐qP). The latter typically represents a lower reduction state of the plastoquinone pool, and thereby facilitates electron flow along the electron transport chain. Line Lggs12 showed the highest transgene expression level, highest γ‐EC accumulation in leaves and highest GSH enrichment in phloem exudates and roots. This line also exhibited a reduced growth, and after a prolonged growth of 4.5 months, symptoms of leaf injury. Decreased maximum quantum yield (Fv/Fm) indicated down‐regulation of photosystem II reaction centre (PSII RC), which correlates with decreased PSII RC protein D1 (PsbA) and diminished light‐harvesting complex (Lhcb1). Potential effects of changes in chloroplastic and cytosolic GSH contents on photosynthesis, growth and the whole‐plant sulphur nutrition are discussed for each line.  相似文献   
7.
Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ15N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ15N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ15N was correlated fairly well between phloem and xylem saps. These variations in δ15N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to 15N‐enriched glutamine acting as transport form of N. δ15N of the water soluble fraction of roots and leaves partially affected δ15N of phloem and xylems saps. δ15N patterns are likely the result of a complex set of interactions and N‐fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course – a fact that needs to be taken into account when sampling for isotopic studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号