首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2006年   2篇
  2005年   1篇
  1998年   2篇
  1995年   3篇
  1982年   2篇
  1957年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Red wood ants (Formica rufa group) constitute a group of species that are considered to be among the most promising bioindicators in forest ecosystems. However, because of their morphological similarity and intraspecific variability, morphological species identification can be difficult. Considerable expertise is necessary to discriminate between the sibling species F. lugubris and F. paralugubris, two species that often live in sympatry in the same Alpine forests. New taxonomic tools providing rapid and reliable species identification are needed. We present a simple and reliable molecular technique based on mtDNA (COI gene) and a restriction enzyme for discriminating between F. lugubris and F. paralugubris. We confirm the validity of this method with a Bayesian analysis based on microsatellites. This new molecular tool represents a clear breakthrough for discriminating between F. lugubris and F. paralugubris and is likely to be helpful in large‐scale biomonitoring.  相似文献   
2.
Abstract 1. We monitored three different‐sized wood ant (Formica aquilonia Yarrow) mounds over a 3‐year period in Finnish boreal forests dominated by Norway spruce (Picea abies Karst.), to assess the seasonal temperature dependency of ant activity. Additionally, we also monitored Norway spruce trees around the mounds for descending honeydew foragers. 2. The amount of collected honeydew and prey and its composition, as well as the carbon (C), nitrogen (N), and phosphorus (P) in honeydew and invertebrate prey was also investigated. 3. The number of warm days (average temperature above 20 °C) and the amount of precipitation differed among the years. Ant activity at the mounds (but not on the trees) was highly correlated with air temperature throughout the ant‐active season (May–September), but ant activity in spring and autumn was lower than in summer at similar temperatures. During all 3 years, honeydew played a major role in wood ant nutrition (78–92% of dry mass). Invertebrate prey was mainly Diptera (on average 26.2%), Coleoptera (12.5%), Aphidina (9.3%), and Arachnoida (8.5%). 4. The total amounts of C, N, and P input brought into the ant mounds in the form of food (both honeydew and prey) on the stand level were 12.6–39.0, 1.6–4.6 and 0.1–0.4 kg ha?1 year?1, respectively, which is equivalent to 2–6%, 12–33% and 27–58% of the fluxes in annual needle litterfall in typical boreal Norway spruce forests. Thus, wood ants can play a significant role in short term and local N and P cycling of boreal forest ecosystems.  相似文献   
3.
Symbiotic dinitrogen fixation by legume trees represents a substantial N input in agroforestry systems, which may benefit the associated crops. Applying 15N labelling, we studied N transfer via common mycelial networks (CMN) and root exudation from the legume tree Gliricidia sepium to the associated fodder grass Dichantium aristatum . The plants were grown in greenhouse in shared pots in full interaction (treatment FI) or with their root systems separated with a fine mesh that allowed N transfer via CMN only (treatment MY). Tree root exudation was measured separately with hydroponics. Nitrogen transfer estimates were based on the isotopic signature of N ( δ 15N) transferred from the donor. We obtained a range for estimates by calculating transfer with δ 15N of tree roots and exudates. Nitrogen transfer was 3.7–14.0 and 0.7–2.5% of grass total N in treatments FI and MY, respectively. Root δ 15N gave the lower and exudate δ 15N the higher estimates. Transfer in FI probably occurred mainly via root exudation. Transfer in MY correlated negatively with grass root N concentration, implying that it was driven by source-sink relationships between the plants. The range of transfer estimates, depending on source δ 15N applied, indicates the need of understanding the transfer mechanisms as a basis for reliable estimates.  相似文献   
4.
We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free‐air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3] during growing seasons 1998–2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2‐ and O3‐exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone‐specific decrease in wood density and cell wall thickness was observed under elevated CO2. In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short‐term impact studies conducted with young seedlings may not give a realistic view of long‐term ecosystem responses.  相似文献   
5.
Abstract.
  • 1 We studied within-tree variation in leaf quality of the mountain birch, Betula pubescens ssp. tortuosa, for larvae of the autumnal moth, Epirrita autumnata.
  • 2 The purpose of the study was to determine the possible occurrence of systematic differences in larval growth on short shoot leaves (i.e. leaves of the same age): among leaves facing in different compass directions, between leaves of lower and upper branches, among leaves on different positions within a branch and among leaves of different sizes within a short shoot. We also measured larval growth between short shoot and long shoot leaves (i.e. between leaves of different age).
  • 3 The larvae grew best on leaves on the north side of trees and most poorly on south side leaves, the east and west sides being intermediate. Leaves from the upper branches supported larval growth better than leaves from the lower ones. The larvae grew better on the smallest leaf of each short shoot and were able to utilize it more efficiently than the two larger leaves. Short shoot leaves from the basal and middle parts of the upper branches of the trees were of better quality for the larvae than short shoot leaves from the tip part of the branches. The larval growth rate did not differ between short shoot and long shoot leaves. In general, within-tree variation in the larval growth rate was lower than variation among different trees.
  • 4 Damage to leaves can decrease leaf quality for herbivores in the same year (rapidly inducible responses) or the following year(s) (delayed inducible responses). Our results show that systematic within-tree variation in larval growth can be as great as the effects of rapidly inducible responses and that variation among individual trees can be as great as the mean effects of delayed inducible responses.
  相似文献   
6.
Abstract.  1. Vegetation structural complexity is an important factor influencing ecological interactions between different trophic levels. In order to investigate relationships between the architecture of trees, the presence of arthropod predators, and survival and parasitism of the autumnal moth Epirrita autumnata Borkhausen, two sets of experiments were conducted.
2. In one experiment, the architectural complexity of mountain birch was manipulated to separate the effects of plant structure and age. In the other experiment the trees were left intact, but chosen to represent varying degrees of natural complexity. Young autumnal moth larvae were placed on the trees and their survival was monitored during the larval period.
3. The larvae survived longer in more complex trees if predation by ants was prevented with a glue ring, whereas in control trees smaller canopy size improved survival times in one experiment. The density of ants observed in the trees was not affected by canopy size but spider density was higher on smaller trees. The effect of canopy structure on larval parasitism was weak; larger canopy size decreased parasitism only in one year. Until the fourth instar the larvae travelled shorter distances in trees with reduced branchiness than in trees with reduced foliage or control treatments. Canopy structure manipulation by pruning did not alter the quality of leaves as food for larvae.
4. The effect of canopy structure on herbivore survival may depend on natural enemy abundance and foraging strategy. In complex canopies herbivores are probably better able to escape predation by ambushing spiders but not by actively searching ants.  相似文献   
7.
The objective of the study was to investigate the interactive effects of elevated atmospheric carbon dioxide concentration, [CO2], and temperature on the wood properties of mature field-grown Norway spruce ( Picea abies (L.) Karst.) trees. Material for the study was obtained from an experiment in Flakaliden, northern Sweden, where trees were grown for 3 years in whole-tree chambers at ambient (365 μmol mol−1) or elevated [CO2] (700 μmol mol−1) and ambient or elevated air temperature (ambient +5.6 °C in winter and ambient +2.8 °C in summer). Elevated temperature affected both wood chemical composition and structure, but had no effect on stem radial growth. Elevated temperature decreased the concentrations of acetone-soluble extractives and soluble sugars, while mean and earlywood (EW) cell wall thickness and wood density were increased. Elevated [CO2] had no effect on stem wood chemistry or radial growth. In wood structure, elevated [CO2] decreased EW cell wall thickness and increased tracheid radial diameter in latewood (LW). Some significant interactions between elevated [CO2] and temperature were found in the anatomical and physical properties of stem wood (e.g. microfibril angle, and LW cell wall thickness and density). Our results show that the wood material properties of mature Norway spruce were altered under exposure to elevated [CO2] and temperature, although stem radial growth was not affected by the treatments.  相似文献   
8.
9.
Outcrossing is the prevalent mode of reproduction in plants and animals despite its substantial costs, while selfing and mixed mating occur at much lower frequency. Comparative research on plants has demonstrated the lability of self‐incompatibility, but there is little information about the transition on a within‐species level from self‐incompatibility to predominant selfing. We studied variation in mating system among 18 populations of Arabidopsis lyrata within a phylogenetic context to shed light on the evolution of selfing. Realized and potential mating systems were assessed by genetic analysis with microsatellite markers and hand‐self‐pollinations on 30 plants from each population. The fraction of self‐incompatible plants in a population was highly correlated with the outcrossing rate, showing that the spread of self‐compatibility is accompanied by or soon followed by an increase in the rate of selfing. The four predominantly selfing populations (outcrossing rates < 0.25) fell into more than one phylogenetic cluster, suggesting that the transition to selfing occurred more than once independently. Hence, A. lyrata offers an opportunity for the comparative analysis of outcrossing as a predominant mode of reproduction in plants and of the causes of the shift to selfing.  相似文献   
10.
Abstract. 1. The seasonal distribution of macrolepidopteran species richness on Finnish deciduous trees vaned from positively skewed (peak in spring) to negatively skewed (peak in autumn).
2. The skewness values of species richness had a significant negative correlation ( r = - 0.98) with the duration of the seasonal shoot-growth period of the tree species.
3. Trees which complete their shoot growth early in the season ( Quercus type) produce new leaves only during spring, while trees whose shoot growth continues to autumn ( Populus type) do so throughout the summer.
4. Consequently, there is a difference in the number of available resources in the late summer foliage of different tree species, Trees ceasing leaf production early such as oak ( Quercus robur ) and bird cherry ( Prunus padus ) have one major resource type (mature leaves) in late-season foliage while trees like birches and alders have two Ooung and mature leaves).
5. Because young leaves formed late in the season are preferred to mature ones by some species of herbivores and because other species prefer mature leaves at the same time, the species richness of Populus-type trees is higher later in the season than the species richness of Quercus-type of trees, which have just one type of resource available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号