首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有42条查询结果,搜索用时 207 毫秒
1.
Supraependymal cells, fibers and what are presumed to be neuronal bulb-like projections were found in the third ventricle of the domestic chicken with a scanning electron microscope. At least two types of supraependymal cells were found: neuron-like cells and phagocyte-like cells. The former were predominantly seen in the area of the paraventricular organ and infundibular recess. The latter were abundant on the ventricular surface of the median eminence and subfornical organ. Bulb or club-like projections thought to be the dendritic terminals of CSF-contacting neurons were observed in the area of the paraventricular organ and infundibular recess. Similar structures were observed at the preoptic recess as well. The supraependymal neuronal components found in the domestic chicken differed from those of mammals in several respects: 1. the wall of the third ventricle was devoid of supraependymal fibrous plexus except for that of the paraventricular organ; 2. bulb-like projections were abundant in the area of the paraventricular organ; 3. supraependymal neuron-like cells were unipolar or bipolar in appearance. These data underline the dissimilarity of the CSF-contacting neuronal system of birds and mammals.  相似文献   
2.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine found in lepidopteran insects that possesses diverse biological activities such as stimulation of immune cells (plasmatocytes), cell proliferation, and larval growth regulation. We found another novel function of GBP that induces a hemolysis of another class of blood cells (oenocytoids). In the lysate of oenocytoids we identified a GBP-binding protein that shows a specific affinity for GBP. The characterization of purified GBP-binding protein and its cDNA demonstrated it as a 49.5-kDa novel protein with a C-terminal region displaying limited homology to several insect lipoproteins. Results of Northern and Western blotting indicated that the GBP-binding protein should be synthesized only in blood cells. Immunoelectron microscopic analyses confirmed that indirect immunoreactive signals were mostly localized in oenocytoids. Kinetic and biological analyses of interaction between GBP and the binding protein showed their strong binding was followed by clearance of GBP from hemolymph, thus indicating that this protein might function as an inhibitory factor against GBP. Based on these results, we propose that insect cytokine GBP shows multifunctions even in cellular immunity: it serves to stimulate immune cells and afterward silences its own action by inducing the binding protein through specific hemolysis.  相似文献   
3.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   
4.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   
5.
VEGF-induced vascular permeability is mediated by FAK   总被引:1,自引:0,他引:1  
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.  相似文献   
6.
7.
In this review, we summarize recent advances in understanding frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and related neurodegenerative disorders that are collectively known as TDP-43 proteinopathies, since transactive response DNA-binding protein 43 (TDP-43) was recently shown to be the major component of the ubiquitinated inclusions that are their pathological hallmarks. TDP-43 proteinopathies are distinct from most other neurodegenerative disorders because TDP-43 inclusions are not amyloid deposits. Besides TDP-43-positive inclusions, both sporadic and familial forms of FTLD and ALS have the pathologic TDP-43 signature of abnormal hyperphosphorylation, ubiquitination and C-terminal fragments in affected brain and spinal cord, suggesting that they share a common mechanism of pathogenesis. Thus, these findings support the concept that FTLD and ALS represent a clinicopathologic spectrum of one disease, that is, TDP-43 proteinopathy.  相似文献   
8.
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.  相似文献   
9.
Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant vascular endothelial growth factor (VEGF-A) and tumor-induced VEC-Y658 phosphorylation in vivo. Adherence of VEGF-expressing tumor cells to ECs triggered FAK-dependent VEC-Y658 phosphorylation. Both FAK inhibition and VEC-Y658F mutation within ECs prevented VEGF-initiated paracellular permeability and tumor cell transmigration across EC barriers. In mice, EC FAK inhibition prevented VEGF-dependent tumor cell extravasation and melanoma dermal to lung metastasis without affecting primary tumor growth. As pharmacological c-Src or FAK inhibition prevents VEGF-stimulated c-Src and FAK translocation to EC adherens junctions, but FAK inhibition does not alter c-Src activation, our experiments identify EC FAK as a key intermediate between c-Src and the regulation of EC barrier function controlling tumor metastasis.  相似文献   
10.
The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号