首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Specific root length as an indicator of environmental change   总被引:4,自引:0,他引:4  
Abstract

Specific root length (SRL, m g?1) is probably the most frequently measured morphological parameter of fine roots. It is believed to characterize economic aspects of the root system and to be indicative of environmental changes. The main objectives of this paper were to review and summarize the published SRL data for different tree species throughout Europe and to assess SRL under varying environmental conditions. Meta-analysis was used to summarize the response of SRL to the following manipulated environmental conditions: fertilization, irrigation, elevated temperature, elevated CO2, Al-stress, reduced light, heavy metal stress and physical disturbance of soil. SRL was found to be strongly dependent on the fine root classes, i.e. on the ectomycorrhizal short roots (ECM), and on the roots <0.5 mm, <1 mm, <2 mm and 1 – 2 mm in diameter SRL was largest for ECM and decreased with increasing diameter. Changes in soil factors influenced most strongly the SRL of ECM and roots <0.5 mm. The variation in the SRL components, root diameter and root tissue density, and their impact on the SRL value were computed. Meta-analyses showed that SRL decreased significantly under fertilization and Al-stress; it responded negatively to reduced light, elevated temperature and CO2. We suggest that SRL can be used successfully as an indicator of nutrient availability to trees in experimental conditions.  相似文献   
2.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   
3.
Grey alder (Alnus incana) and black alder (Alnus glutinosa) stands on forest land, abandoned agricultural, and reclaimed oil-shale mining areas were investigated with the aim of analysing the functional diversity and activity of microbial communities in the soil–root interface and in the bulk soil in relation to fine-root parameters, alder species, and soil type. Biolog Ecoplates were used to determine community-level physiological profiles (CLPP) of culturable bacteria in soil–root interface and bulk soil samples. CLPP were summarized as AWCD (average well color development, OD 48 h−1) and by Shannon diversity index, which varied between 4.3 and 4.6 for soil–root interface. The soil–root interface/bulk soil ratio of AWCD was estimated. Substrate-induced respiration (SIR) and basal respiration (BAS) of bulk soil samples were measured and metabolic quotient (Q = BAS/SIR) was calculated. SIR and Q varied from 0.24 to 2.89 mg C g−1 and from 0.12 to 0.51, respectively. Short-root morphological studies were carried out by WinRHIZOTM Pro 2003b; mean specific root area (SRA) varied for grey alder and black alder from 69 to 103 and from 54 to 155 m2 kg−1, respectively. The greatest differences between AWCD values of culturable bacterial communities in soil–root interface and bulk soil were found for the young alder stands on oil-shale mining spoil and on abandoned agricultural land. Soil–root interface/bulk soil AWCD ratio, ratio for Shannon diversity indices, and SRA were positively correlated. Foliar assimilation efficiency (FOE) was negatively correlated with soil–root interface/bulk soil AWCD ratio. The impact of soil and alder species on short-root morphology was significant; short-root tip volume and mass were greater for black alder than grey alder. For the investigated microbiological characteristics, no alder-species-related differences were revealed.  相似文献   
4.
Ostonen  Ivika  Lõhmus  Krista  Lasn  Rein 《Plant and Soil》1999,208(2):283-292
The present study is an attempt to investigate the pattern of morphological variability of the short roots of Norway spruce (Picea abies (L.) Karst.) growing in different soils. Five root parameters – diameter, length and dry weight of the root tip, root density (dry weight per water-saturated volume) and specific root area (absorbing area of dry weight unit) were studied with respect to 11 soil characteristics using CANOCO RDA analysis. The investigation was conducted in seven study areas in Estonia differing in site quality class and soil type. Ten root samples per study area were collected randomly from the forest floor and from the 20 cm soil surface layer. Eleven soil parameters were included in the study: humus content, specific soil surface area, field capacity, soil bulk density, pH (KCl and H2O dilution's), N and Ca concentrations, Ca/Al and C/N ratios, and the decomposition rate of fine roots (<2 mm dia.). Root morphological characteristics most strongly related to the measured soil characteristics in the different sites were specific root area, root density and diameter of the short roots, the means varying from 29 to 42 m2 kg−1, from 310 to 540 kg m−3 and from 0.26 to 0.32 mm, respectively; root density being most sensitive. The most favourable site and soil types resulting in fine roots with morphological characteristics for optimizing nutrient uptake (e.g. low short root density and high specific root area) were Umbric Luvisol (Oxalis), Dystric Gleysol (Oxalis) and Gleyic Luvisol (Hepatica). These soil types correspond to highly productive natural forest stands of Norway spruce in Estonia. All measured soil variables explained 28% of total variance of the root characteristics. The most important variables related to root morphology were the humus content, field capacity and specific soil surface area. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
6.
7.

Background and aims

The main objectives of this study were to determine how the carbon age of fine root cellulose varies between stands, tree species, root diameter and soil depth. In addition, we also compared the carbon age of fine roots from soil cores of this study with reported values from the roots of the same diameter classes of ingrowth cores on the same sites.

Methods

We used natural abundance of 14C to estimate root carbon age in four boreal Norway spruce and Scots pine stands in Finland and Estonia.

Results

Age of fine root carbon was older in 1.5–2 mm diameter fine roots than in fine roots with <0.5 mm diameter, and tended to be older in mineral soil than in organic soil. Fine root carbon was older in the less fertile Finnish spruce stands (11–12 years) than in the more fertile Estonian stand (3 and 8 years), implying that roots may live longer in less fertile soil. We further observed that on one of our sites carbon in live fine roots with the 1.5–2 mm diameter was of similar C age (7–12 years) than in the ingrowth core roots despite the reported root age in the ingrowth cores – being not older than 2 years.

Conclusions

From this result, we conclude that new live roots may in some cases use old carbon reserves for their cellulose formation. Future research should be oriented towards improving our understanding of possible internal redistribution and uptake of C in trees.  相似文献   
8.
The aim of this study was to test P-enriched filter materials from a wastewater treatment experiment regarding their fertilizing efficiency in pot experiments with silver birch (Betula pendula Roth.) seedlings. Tested materials included hydrated calcium-rich oil shale ash and well-mineralised peat. A mixture of peat and hydrated ash demonstrated the best results: seedlings grown on that mixture had the highest P concentration and an optimal N:P:K ratio in leaves. Hydrated ash has a low concentration of heavy metals and almost the same composition as common lime fertilizers. The hydrated ash sediment and its combination with well-mineralised peat enriched with phosphorus in wastewater treatment filters are promising materials for forest soil fertilization.  相似文献   
9.
Plant Ecology - Key functions of fine roots are often related to their morphological traits, yet little is known about the patterns and controls on fine-root morphological traits in the tropical...  相似文献   
10.

Aims and methods

The effects of changing climate on ectomycorrhizal (EcM) fine roots were studied in northern Sweden by manipulating soil temperature for 14 years and/or by fertilizing for 22 years. Fine root biomass, necromass, EcM root tip biomass, morphology and number as well as mycelia production were determined from soil cores and mesh bags.

Results and conclusions

The fine root biomass and necromass were highest in the fertilized plots, following similar trends in the above-ground biomass, whereas the EcM root tip biomass per basal area decreased by 22 % in the fertilized plots compared to the control. Warming increased the fine root biomass, live/dead-ratio and the number of EcM root tips in the mineral soil and tended to increase the production of EcM mycelia. Greater fine root biomass meant more EcM root tips, although the tip frequency was not affected by fertilization or warming. Significantly higher specific root length of EcM root tips indicated an increased need for nutrients in warmed and in unfertilized plots. Better nutrient supply and warmer soil temperature provide a potential to increase the flow of carbon into the soil via increased fine root biomass, but the carbon balance also depends on root turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号