首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2022年   1篇
  2017年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Markovich  Oshry  Zexer  Nerya  Negin  Boaz  Zait  Yotam  Blum  Shula  Ben-Gal  Alon  RivkaElbaum  Rivka 《Plant and Soil》2022,477(1-2):57-67
Plant and Soil - High and stable plant productivity is a major aim in agricultural research. Silicon fertilization improves yields of various crops under stress. Nonetheless, broad application of...  相似文献   
2.
Silicate minerals are dominant soil components. Thus, plant roots are constantly exposed to silicic acid. High silicon intake, enabled by root silicon transporters, correlates with increased tolerance to many biotic and abiotic stresses. However, the underlying protection mechanisms are largely unknown. Here, we tested the hypothesis that silicon interacts with the plant hormones, and specifically, that silicic acid intake increases cytokinin biosynthesis. The reaction of sorghum (Sorghum bicolor) and Arabidopsis plants, modified to absorb high versus low amounts of silicon, to dark‐induced senescence was monitored, by quantifying expression levels of genes along the senescence pathway and measuring tissue cytokinin levels. In both species, detached leaves with high silicon content senesced more slowly than leaves that were not exposed to silicic acid. Expression levels of genes along the senescence pathway suggested increased cytokinin biosynthesis with silicon exposure. Mass spectrometry measurements of cytokinin suggested a positive correlation between silicon exposure and active cytokinin concentrations. Our results indicate a similar reaction to silicon treatment in distantly related plants, proposing a general function of silicon as a stress reliever, acting via increased cytokinin biosynthesis.  相似文献   
3.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号