首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   9篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   9篇
  1999年   10篇
  1998年   1篇
  1994年   1篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 312 毫秒
1.
K D Bromberg  N Osheroff 《Biochemistry》2001,40(28):8410-8418
A common DNA religation assay for topoisomerase II takes advantage of the fact that the enzyme can rejoin cleaved nucleic acids but cannot mediate DNA scission at suboptimal temperatures (either high or low). Although temperature-induced DNA religation assays have provided valuable mechanistic information for several type II enzymes, high-temperature shifts have not been examined for human topoisomerase IIalpha. Therefore, the effects of temperature on the DNA cleavage/religation activity of the enzyme were characterized. Human topoisomerase IIalpha undergoes two distinct transitions at high temperatures. The first transition occurs between 45 and 55 degrees C and is accompanied by a 6-fold increase in the level of DNA cleavage at 60 degrees C. It also leads to a loss of DNA strand passage activity, due primarily to an inability of ATP to convert the enzyme to a protein clamp. The enzyme alterations that accompany the first transition appear to be stable and do not revert at lower temperature. The second transition in human topoisomerase IIalpha occurs between 65 and 70 degrees C and correlates with a precipitous drop in the level of DNA scission. At 75 degrees C, cleavage falls well below amounts seen at 37 degrees C. This loss of DNA scission appears to result from a decrease in the forward rate of DNA cleavage rather than an increase in the religation rate. Finally, similar high-temperature alterations were observed for yeast topoisomerase II and human topoisomerase IIbeta, suggesting that parallel heat-induced transitions may be widespread among type II topoisomerases.  相似文献   
2.
Role of the divalent cation in topoisomerase II mediated reactions   总被引:3,自引:0,他引:3  
N Osheroff 《Biochemistry》1987,26(20):6402-6406
The effects of magnesium ions on interactions between Drosophila melanogaster topoisomerase II and its substrates were assessed by a number of kinetic and binding assays. Results indicated that the divalent cation plays two distinct functions in promoting enzyme-substrate interactions. One class of magnesium ions participates directly in enzyme-mediated DNA cleavage reactions. A second class of magnesium ions participates directly in topoisomerase II mediated ATPase reactions and functions by providing the enzyme with a magnesium-ATP substrate. In contrast, the divalent cation did not affect the quaternary structure of the enzyme, was not required for the site-specific binding of topoisomerase II to DNA, and did not affect the enzyme's ability to discern the topological state of its nucleic acid substrate.  相似文献   
3.
We have purified and characterized an oligopeptide binding protein released from the periplasm of Escherichia coli W by mild osmotic shock. The purified protein was greater than 97% homogeneous as determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 60,000) or isoelectric focusing (pI = 5.95). The binding protein has a Stokes radius of 30 A and a sedimentation coefficient (s(0)20,w) of 4.6 S. Based on these hydrodynamic studies, the native protein has a molecular weight of 56,000. The tripeptide, Ala-Phe-[3H]Gly, which is transported via the shock-sensitive sensitive oligopeptide permease, binds to the purified protein in dilute solution with a Kd of 0.1 microM and a stoichiometry of approximately 1 to 1. Results from this study support the hypothesis that this periplasmic oligopeptide binding protein functions in the initial recognition of peptide substrates for the oligopeptide permease system.  相似文献   
4.
Human adenovirus early region 1A (E1A) gene products differentially regulate the expression of early region 2A (E2A) encoding the DNA-binding protein (DBP). In a microinjection system, plasmids containing the DBP gene associated with both its early (map coordinate 75) and late (coordinate 72) promoters, or only with the early promoter, are inefficiently expressed, and the presence of E1A DNA is required for full expression. In contrast, the E2A plasmid in which the DBP gene is associated solely with its late promoter, efficiently produces DBP, the synthesis of which is significantly inhibited by an E1A gene product. To identify which of the E1A products is responsible for either activation or repression of DBP gene expression, two E1A mutants (Ad5hr1 and Ad2/5pm975) have been tested in the microinjection system in the presence of different DBP plasmids containing either one or both promoters. The results obtained indicate that the product encoded by the E1A 13S mRNA is responsible for the stimulation of DBP produced from the early promoter and that the 12S mRNA codes for the product which represses the synthesis of DBP from the late promoter. These results were confirmed using clones in which the E2A early or late promoter was associated to the chloramphenicol acetyltransferase (CAT) gene and assayed for CAT activity after cell transfection in the absence or in the presence of wild-type or mutant E1A plasmids, and we have also shown that this promoter-dependent regulation is reflected in the relative amount of specific DBP mRNA.  相似文献   
5.
6.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   
7.
In order to characterize more fully the mechanism by which casein kinase II is regulated in mammalian cells, the effect of epidermal growth factor (EGF) on the activity of the kinase in human A-431 carcinoma cells was examined. Treatment of cells with EGF prior to lysis consistently resulted in a transient 4-fold increase in the activity of cytosolic casein kinase II. Activity rose sharply between 20 and 30 min, peaked at approximately 50 min, and returned to basal levels by approximately 120 min. Similar results were obtained using the casein kinase II specific peptide substrate, Arg-Arg-Arg-Glu-Glu-Glu-Thr-Glu-Glu-Glu, or DNA topoisomerase II (which is specifically modified by the kinase in vivo and serves as a high affinity substrate in vitro) as the phosphate acceptor in assays. Identification of casein kinase II as the stimulated activity was confirmed by partial proteolytic mapping and phosphoamino acid analysis of modified topoisomerase II, by inhibition at nanomolar levels of heparin or micromolar levels of nonradioactive GTP, and by the ability to employ radioactive GTP as a direct phosphate donor. The EGF stimulation of casein kinase II was dependent on the availability of intracellular (but not extracellular) calcium. In addition, hormonal action was modulated by calcium/phospholipid-dependent protein kinase (protein kinase C). Casein kinase II stimulation did not require an increase in the concentration of the kinase, protein synthesis, the continual presence of a small effector molecule, or a direct interaction with the EGF receptor/tyrosine kinase. In contrast, hormonal activation of the kinase was dependent on the phosphorylation of casein kinase II or a terminal stimulatory factor.  相似文献   
8.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   
9.
M J Robinson  N Osheroff 《Biochemistry》1991,30(7):1807-1813
The post-strand-passage DNA cleavage/religation equilibrium of Drosophila melanogaster topoisomerase II was examined. This was accomplished by including adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analogue which supports strand passage but not enzyme turnover, in assays. Levels of post-strand-passage enzyme-mediated DNA breakage were 3-5 times higher than those generated by topoisomerase II prior to the strand-passage event. This finding correlated with a decrease in the apparent first-order rate of topoisomerase II mediated DNA religation in the post-strand-passage cleavage complex. Since previous studies demonstrated that antineoplastic drugs stabilize the pre-strand-passage cleavage complex of topoisomerase II by impairing the enzyme's ability to religate cleaved DNA [Osheroff, N. (1989) Biochemistry 28, 6157-6160; Robinson, M.J., & Osheroff, N. (1990) Biochemistry 29, 2511-2515], the effects of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide on the enzyme's post-strand-passage DNA cleavage complex were characterized. Both drugs stimulated the ability of topoisomerase II to break double-stranded DNA after strand passage. As determined by two independent assay systems, m-AMSA and etoposide stabilized the enzyme's post-strand-passage DNA cleavage complex primarily by inhibiting DNA religation. These results strongly suggest that both the pre- and post-strand-passage DNA cleavage complexes of topoisomerase II serve as physiological targets for these structurally disparate antineoplastic drugs.  相似文献   
10.
In marine ecosystems, macroalgae are the habitat for several microorganisms, fungi being among them. In the Antarctic benthic coastal ecosystem, macroalgae play a key role in organic matter cycling. In this study, 13 different macroalgae from Potter Cove and surrounding areas were sampled and 48 fungal isolates were obtained from six species, four Rhodophyta Ballia callitricha, Gigartina skottsbergii, Neuroglossum delesseriae and Palmaria decipiens, and two Phaeophyceae: Adenocystis utricularis and Ascoseira mirabilis. Fungal isolates mostly belonged to the Ascomycota phylum (Antarctomyces, Cadophora, Cladosporium, Penicillium, Phialocephala, and Pseudogymnoascus) and only one to the phylum Mucoromycota. Two of the isolates could not be identified to genus level, implying that Antarctica is a source of probable novel fungal taxa with enormous bioprospecting and biotechnological potential. 73% of the fungal isolates were moderate eurypsychrophilic (they grew at 5–25 °C), 12.5% were eurypsychrophilic and grew in the whole range, 12.5% of the isolates were narrow eurypsychrophilic (growth at 15–25 °C), and Mucoromycota AUe4 was classified as stenopsychrophilic as it grew at 5–15 °C. Organic extracts of seven macroalgae from which no fungal growth was obtained (three red algae Georgiella confluens, Gymnogongrus turquetii, Plocamium cartlagineum, and four brown algae Desmarestia anceps, D. Antarctica, Desmarestia menziesii, Himantothallus grandifolius) were tested against representative fungi of the genera isolated in this work. All extracts presented fungal inhibition, those from Plocamium cartilagineum and G. turquetii showed the best results, and for most of these macroalgae, this represents the first report of antifungal activity and constitute a promising source of compounds for future evaluation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号