首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   23篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.  相似文献   
3.
LeBlanc HN  Tang TT  Wu JS  Orr-Weaver TL 《Chromosoma》1999,108(7):401-411
Faithful segregation of sister chromatids during cell division requires properly regulated cohesion between the sister centromeres. The sister chromatids are attached along their lengths, but particularly tightly in the centromeric regions. Therefore specific cohesion proteins may be needed at the centromere. Here we show that Drosophila MEI-S332 protein localizes to mitotic metaphase centromeres. Both overexpression and mutation of MEI-S332 increase the number of apoptotic cells. In mei-S332 mutants the ratio of metaphase to anaphase figures is lower than wild type, but it is higher if MEI-S332 is overexpressed. In chromosomal squashes centromeric attachments appear weaker in mei-S332 mutants than wild type and tighter when MEI-S332 is overexpressed. These results are consistent with MEI-S332 contributing to centromeric sister-chromatid cohesion in a dose-dependent manner. MEI-S332 is the first member identified of a predicted class of centromeric proteins that maintain centromeric cohesion. Received: 11 December 1998; in revised form: 4 August 1999 / Accepted: 13 August 1999  相似文献   
4.
In mitosis and meiosis, cohesion is maintained at the centromere until sister-chromatid separation. Drosophila MEI-S332 is essential for centromeric cohesion in meiosis and contributes to, though is not absolutely required for, cohesion in mitosis. It localizes specifically to centromeres in prometaphase and delocalizes at the metaphase-anaphase transition. In mei-S332 mutants, centromeric sister-chromatid cohesion is lost at anaphase I, giving meiosis II missegregation. MEI-S332 is the founding member of a family of proteins important for chromosome segregation. One likely activity of these proteins is to protect the cohesin subunit Rec8 from cleavage at the metaphase I-anaphase I transition. Although the family members do not show high sequence identity, there are two short stretches of homology, and mutations in conserved residues affect protein function. Here we analyze the cis- and trans-acting factors required for MEI-S332 localization. We find a striking correlation between domains necessary for MEI-S332 centromere localization and conserved regions within the protein family. Drosophila MEI-S332 expressed in human cells localizes to mitotic centromeres, further highlighting this functional conservation. MEI-S332 can localize independently of cohesin, assembling even onto unreplicated chromatids. However, the separase pathway that regulates cohesin dissociation is needed for MEI-S332 delocalization at anaphase.  相似文献   
5.
6.
7.
Following completion of meiosis, DNA replication must be repressed until fertilization. In Drosophila, this replication block requires the products of the pan gu (png), plutonium (plu) and giant nuclei (gnu) genes. These genes also ensure that S phase oscillates with mitosis in the early division cycles of the embryo. We have identified the png gene and shown that it encodes a Ser/Thr protein kinase expressed only in ovaries and early embryos, and that the predicted extent of kinase activity in png mutants inversely correlates with the severity of the mutant phenotypes. The PLU and PNG proteins form a complex that has PNG-dependent kinase activity, and this activity is necessary for normal levels of mitotic cyclins. Our results reveal a novel protein kinase complex that controls S phase at the onset of development apparently by stabilizing mitotic cyclins.  相似文献   
8.
The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.  相似文献   
9.
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号