首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   8篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1990年   2篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有69条查询结果,搜索用时 985 毫秒
1.
We have expressed the human EGF receptor (hEGF-R) in Xenopus oocytes by injecting mRNA synthesized in vitro using SP6 vectors containing receptor cDNAs. Each oocyte could express over 1 x 10(10) receptors of a single affinity class and these were able to bind and rapidly internalize EGF. Occupancy resulted in receptor tyrosine autophosphorylation, downregulation, and release of intracellular calcium. Occupied receptors also rapidly induced meiotic maturation in stage VI oocytes. Receptors lacking tyrosine kinase activity bound EGF normally, but did not downregulate or induce any biological responses. The rate of oocyte maturation was proportional to hEGF-R occupancy and was significantly faster than progesterone-induced maturation at nanomolar EGF concentrations. Mutant hEGF-R truncated at residue 973 displayed identical phenotypes in both mammalian cells and oocytes in that they were defective in their ability to release intracellular calcium, undergo ligand induced internalization and receptor downregulation. However, these receptors were fully capable of inducing oocyte maturation. The remarkable retention of specific biological activities of different hEGF-R in the context of oocytes suggests that this receptor system interacts with generally available cellular components that have been conserved during evolution. In addition, it suggests that cell surface tyrosine kinase activity may play an important role in regulating resumption of the cell cycle.  相似文献   
2.
The RecQ helicase family comprises a conserved group of proteins implicated in several aspects of DNA metabolism. Three of the family members are defective in heritable diseases characterized by abnormal growth, premature aging, and predisposition to malignancies. These include the WRN and BLM gene products that are defective in Werner and Bloom syndromes, disorders which share many phenotypic and cellular characteristics including spontaneous genomic instability. Here, we report a physical and functional interaction between BLM and WRN. These proteins were coimmunoprecipitated from a nuclear matrix-solubilized fraction, and the purified recombinant proteins were shown to interact directly. Moreover, BLM and WRN colocalized to nuclear foci in three human cell lines. Two regions of WRN that mediate interaction with BLM were identified, and one of these was localized to the exonuclease domain of WRN. Functionally, BLM inhibited the exonuclease activity of WRN. This is the first demonstration of a physical and functional interaction between RecQ helicases. Our observation that RecQ family members interact provides new insights into the complex phenotypic manifestations resulting from the loss of these proteins.  相似文献   
3.
Werner syndrome is a human premature aging disorder displaying cellular defects associated with telomere maintenance including genomic instability, premature senescence, and accelerated telomere erosion. The yeast homologue of the Werner protein (WRN), Sgs1, is required for recombination-mediated lengthening of telomeres in telomerase-deficient cells. In human cells, we report that WRN co-localizes and physically interacts with the critical telomere maintenance protein TRF2. This interaction is mediated by the RecQ conserved C-terminal region of WRN. In vitro, TRF2 demonstrates high affinity for WRN and for another RecQ family member, the Bloom syndrome protein (BLM). TRF2 interaction with either WRN or BLM results in a notable stimulation of their helicase activities. Furthermore, the WRN and BLM helicases, partnered with replication protein A, actively unwind long telomeric duplex regions that are pre-bound by TRF2. These results suggest that TRF2 functions with WRN, and possibly BLM, in a common pathway at telomeric ends.  相似文献   
4.
BACKGROUND: Morbidity management is a core component of the global programme for the elimination of lymphatic filariasis. In a double-blind clinical trial, the tolerability and efficacy of Daflon (500 mg) + DEC (25 mg) or DEC (25 mg) alone, twice daily for 90 days, was studied in 26 patients with bancroftian filarial lymphoedema. RESULTS: None of the patients in either drug group reported any adverse reaction throughout the treatment period (90 days). Haematological and biochemical parameters were within normal limits and there was no significant difference between the pre-treatment (day 0) and post-treatment (day 90) values. The group receiving Daflon showed significant reduction in oedema volume from day 90 (140.6 PlusMinus; 18.8 ml) to day 360 (71.8 PlusMinus; 20.7 ml) compared to the pre-treatment (day 0, 198.4 PlusMinus; 16.5 ml) value. This accounted for a 63.8% reduction in oedema volume by day 360 (considering the pre-treatment (day 0) as 100%). In the DEC group, the changes in oedema volume (between day 1 and day 360) were not significant when compared to the pre-treatment (day 0) value. The percentage reduction at day 360 was only 9%, which was not significant (P > 0.05). CONCLUSION: This study has shown that Daflon (500 mg, twice a day for 90 days) is both safe and efficacious in reducing oedema volume in bancroftian filarial lymphoedema. Further clinical trials are essential for strengthening the evidence base on the role of this drug in the morbidity management of lymphatic filariasis.  相似文献   
5.
The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.  相似文献   
6.
Phospholamban (PLB) associates with the Ca2+-ATPase in sarcoplasmic reticulum (SR) membranes to permit the modulation of contraction in response to -adrenergic signaling. To understand how coordinated changes in the abundance and intracellular trafficking of PLB and the Ca2+-ATPase contribute to the maturation of functional muscle, we measured changes in abundance, location, and turnover of endogenous and tagged proteins in myoblasts and during their differentiation. We found that PLB is constitutively expressed in both myoblasts and differentiated myotubes, whereas abundance increases of the Ca2+-ATPase coincide with the formation of differentiated myotubes. We observed that PLB is primarily present in highly mobile vesicular structures outside the endoplasmic reticulum, irrespective of the expression of the Ca2+-ATPase, indicating that PLB targeting is regulated through vesicle trafficking. Moreover, using pulse-chase methods, we observed that in myoblasts, PLB is trafficked through directed transport through the Golgi to the plasma membrane before endosome-mediated internalization. The observed trafficking of PLB to the plasma membrane suggests an important role for PLB during muscle differentiation, which is distinct from its previously recognized role in the regulation of the Ca2+-ATPase. sarco(endo)plasmic reticulum calcium-adenosine triphosphatase; differentiation; C2C12 myocytes; vesicle trafficking  相似文献   
7.

Background

Leukocyte telomere length (LTL) is an emerging marker of biological age. Chronic inflammatory activity is commonly proposed as a promoter of biological aging in general, and of leukocyte telomere shortening in particular. In addition, senescent cells with critically short telomeres produce pro-inflammatory factors. However, in spite of the proposed causal links between inflammatory activity and LTL, there is little clinical evidence in support of their covariation and interaction.

Methodology/Principal Findings

To address this issue, we examined if individuals with high levels of the systemic inflammatory markers interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) had increased odds for short LTL. Our sample included 1,962 high-functioning adults who participated in the Health, Aging and Body Composition Study (age range: 70–79 years). Logistic regression analyses indicated that individuals with high levels of either IL-6 or TNF-α had significantly higher odds for short LTL. Furthermore, individuals with high levels of both IL-6 and TNF-α had significantly higher odds for short LTL compared with those who had neither high (OR = 0.52, CI = 0.37–0.72), only IL-6 high (OR = 0.57, CI = 0.39–0.83) or only TNF-α high (OR = 0.67, CI = 0.46–0.99), adjusting for a wide variety of established risk factors and potential confounds. In contrast, CRP was not associated with LTL.

Conclusions/Significance

Results suggest that cumulative inflammatory load, as indexed by the combination of high levels of IL-6 and TNF-α, is associated with increased odds for short LTL. In contrast, high levels of CRP were not accompanied by short LTL in this cohort of older adults. These data provide the first large-scale demonstration of links between inflammatory markers and LTL in an older population.  相似文献   
8.
The flow of information through the epidermal growth factor receptor (EGFR) is shaped by molecular interactions in the plasma membrane. The EGFR is associated with lipid rafts, but their role in modulating receptor mobility and subsequent interactions is unclear. To investigate the role of nanoscale rafts in EGFR dynamics, we used single-molecule fluorescence imaging to track individual receptors and their dimerization partner, human epidermal growth factor receptor 2 (HER2), in the membrane of human mammary epithelial cells. We found that the motion of both receptors was interrupted by dwellings within nanodomains. EGFR was significantly less mobile than HER2. This difference was likely due to F-actin because its depolymerization led to similar diffusion patterns between the EGFR and HER2. Manipulations of membrane cholesterol content dramatically altered the diffusion pattern of both receptors. Cholesterol depletion led to almost complete confinement of the receptors, whereas cholesterol enrichment extended the boundaries of the restricted areas. Interestingly, F-actin depolymerization partially restored receptor mobility in cholesterol-depleted membranes. Our observations suggest that membrane cholesterol provides a dynamic environment that facilitates the free motion of EGFR and HER2, possibly by modulating the dynamic state of F-actin. The association of the receptors with lipid rafts could therefore promote their rapid interactions only upon ligand stimulation.  相似文献   
9.
10.
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号