首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   6篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   4篇
  1994年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
2.
The simplest views of long-range electron transfer utilize flat one-dimensional barrier tunneling models, neglecting structural details of the protein medium. The pathway model of protein electron transfer reintroduces structure by distinguishing between covalent bonds, hydrogen bonds, and van der Waals contacts. These three kinds of interactions in a tunneling pathway each have distinctive decay factors associated with them. The distribution and arrangement of these bonded and nonbonded contacts in a folded protein varies tremendously between structures, adding a richness to the tunneling problem that is absent in simpler views. We review the pathway model and the predictions that it makes for protein electron transfer rates in small proteins, docked proteins, and the photosynthetic reactions center. We also review the formulation of the protein electron transfer problem as an effective two-level system. New multi-pathway approaches and improved electronic Hamiltonians are described briefly as well.  相似文献   
3.
4.
Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence‐independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers Lmin still compatible with correct folding behavior. We obtain Lmin between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given LLmin from the burial entropy associated to the largest folding‐compatible fraction of “superfluous” atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above‐average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence‐dependent burial prediction or on sequence‐independent constraints that augment the detectable redundancy during simulations. Proteins 2016; 84:515–531. © 2016 Wiley Periodicals, Inc.  相似文献   
5.
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the fraction helix and end-to-end distance under different pH conditions: pH 4 (60% alpha-helix), pH 6 (0% alpha-helix), and pH 9 (0% alpha-helix). At pH 4, the end-to-end distance was measured at 24 A and determined to be considerably less than the 31 A predicted for an alpha-helix of the same length. At pH 6 and 9, the end-to-end distance was measured at > 31 and 39 A respectively, both which are determined to be considerably greater than the 27 A predicted for a freely jointed random coil of the same length. To better understand the physical forces underlying the unusual helix-coil transition in this peptide, three theoretical MD models of E(20) were constructed: (1) a pure alpha-helix, (2) an alpha-helix with equivalent attractive intramolecular contacts, and (3) a weak alpha-helix with termini-weighted intramolecular contacts ("sticky ends"). Using MD simulations, the bent helix structure calculated from Model 3 was found to be the closest in agreement with the experimental data.  相似文献   
6.
Theory of protein folding   总被引:9,自引:0,他引:9  
Protein folding should be complex. Proteins organize themselves into specific three-dimensional structures, through a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential series of discrete intermediates. In contrast, the energy landscape theory of folding considers folding as the progressive organization of an ensemble of partially folded structures through which the protein passes on its way to the natively folded structure. As a result of evolution, proteins have a rugged funnel-like landscape biased toward the native structure. Connecting theory and simulations of minimalist models with experiments has completely revolutionized our understanding of the underlying mechanisms that control protein folding.  相似文献   
7.
Miyashita O  Onuchic JN  Okamura MY 《Biochemistry》2003,42(40):11651-11660
Electrostatic interactions are important for protein-protein association. In this study, we examined the electrostatic interactions between two proteins, cytochrome c(2) (cyt c(2)) and the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides, that function in intermolecular electron transfer in photosynthesis. Electrostatic contributions to the binding energy for the cyt c(2)-RC complex were calculated using continuum electrostatic methods based on the recent cocrystal structure [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. Calculated changes in binding energy due to mutations of charged interface residues agreed with experimental results for a protein dielectric constant epsilon(in) of 10. However, the electrostatic contribution to the binding energy for the complex was close to zero due to unfavorable desolvation energies that compensate for the favorable Coulomb attraction. The electrostatic energy calculated as a function of displacement of the cyt c(2) from the bound position showed a shallow minimum at a position near but displaced from the cocrystal configuration. These results show that although electrostatic steering is present, other short-range interactions must be present to contribute to the binding energy and to determine the structure of the complex. Calculations made to model the experimental data on association rates indicate a solvent-separated transition state for binding in which the cyt c(2) is displaced approximately 8 A above its position in the bound complex. These results are consistent with a two-step model for protein association: electrostatic docking of the cyt c(2) followed by desolvation to form short-range van der Waals contacts for rapid electron transfer.  相似文献   
8.
9.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.   相似文献   
10.
The stability of RNA tertiary structures depends heavily on Mg2+. The Mg2+-RNA interaction free energy that stabilizes an RNA structure can be computed experimentally through fluorescence-based assays that measure Γ2+, the number of excess Mg2+ associated with an RNA molecule. Previous explicit-solvent simulations predict that the majority of excess Mg2+ ions interact closely and strongly with the RNA, unlike monovalent ions such as K+, suggesting that an explicit treatment of Mg2+ is important for capturing RNA dynamics. Here we present a reduced model that accurately reproduces the thermodynamics of Mg2+-RNA interactions. This model is able to characterize long-timescale RNA dynamics coupled to Mg2+ through the explicit representation of Mg2+ ions. KCl is described by Debye-Hückel screening and a Manning condensation parameter, which represents condensed K+ and models its competition with condensed Mg2+. The model contains one fitted parameter, the number of condensed K+ ions in the absence of Mg2+. Values of Γ2+ computed from molecular dynamics simulations using the model show excellent agreement with both experimental data on the adenine riboswitch and previous explicit-solvent simulations of the SAM-I riboswitch. This agreement confirms the thermodynamic accuracy of the model via the direct relation of Γ2+ to the Mg2+-RNA interaction free energy, and provides further support for the predictions from explicit-solvent calculations. This reduced model will be useful for future studies of the interplay between Mg2+ and RNA dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号