首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2017年   1篇
  2013年   2篇
  2011年   1篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Sphingomonas sp. strain A4 is capable of utilizing acenaphthene and acenaphthylene as sole carbon and energy sources, but it is unable to grow on other polycyclic aromatic hydrocarbons (PAHs). The genes encoding terminal oxygenase components of ring-hydroxylating dioxygenase (arhA1 and arhA2) were isolated from this strain by means of the ability to oxidize indole to indigo of the Escherichia coli clone containing electron transport proteins from phenanthrene-degrading Sphingobium sp. strain P2. The translated products of arhA1 and arhA2 exhibited moderate sequence identity (less than 56%) to large and small subunits of dioxygenase of other ring-hydroxylating dioxygenases. Biotransformation with recombinant E. coli clone revealed the broad substrate specificity of this oxygenase toward several PAHs including acenaphthene, acenaphthylene, naphthalene, phenanthrene, anthracene and fluoranthene. Southern hybridization analysis revealed the presence of a putative arhA1 homologue on a locus different from that of the arhA1 gene. Insertion inactivation of the arhA1 gene in strain A4 suggested that the gene but not the putative homologue one was involved in the degradation of acenaphthene and acenaphthylene in this strain.  相似文献   
2.
Five sets of large and small subunits of terminal oxygenase (ahdA1[a-e] and ahdA2[a-e]) and a single gene set encoding ferredoxin (ahdA3) and ferredoxin reductase (ahdA4) were found to be scattered through 15.8- and 14-kb DNA fragments of phenanthrene-degrading Sphingobium sp. strain P2. RT-PCR analysis indicated the inducible and specific expression of ahdA3, ahdA4, and three sets of genes for terminal oxygenase (ahdA1[c-e] and ahdA2[c-e]) in this strain grown on phenanthrene. The biotransformation experiments with resting cells of Escherichia coli JM109 harboring recombinant ahd genes revealed that AhdA2cA1c, AhdA1dA2d, and AhdA1eA2e can all function as a salicylate 1-hydroxylase which converts salicylate, a metabolic intermediate of phenanthrene, to catechol in cooperation with the electron transport proteins AhdA3A4. The first two oxygenases exhibited a broad range of substrate specificities such that they also catalyzed the hydroxylation of methyl- and chloro-substituted salicylates to produce their corresponding substituted catechols.  相似文献   
3.
4.
The activity of phyllosphere bacteria in the degradation of phenanthrene was investigated as a mechanism for the removal of atmospheric phenanthrene after its deposition on plant leaves. Initially, leaf samples of six plant species were collected from two roadsides in Bangkok to determine the presence of phenanthrene-degrading bacteria. The numbers of phenanthrene-degrading phyllosphere bacteria were varied and ranged from 3.5 x 10(4) to 1.95 x 10(7) CFU/g, in which the highest number was found from Ixora sp. Further studies were carried out in the laboratory by spraying phenanthrene on Ixora sp. leaves and then monitoring the amount of deposited phenanthrene and number of phenanthrene-degrading bacteria after incubation. The results showed that the amount of phenanthrene was significantly reduced on leaves containing phenanthrene-degrading bacteria. These were detected along with a rapid increase in the number of bacteria on leaves. The results indicated that many phyllosphere bacteria could utilize phenanthrene to support their growth and thereby reduce the amount of deposited phenanthrene on leaf surfaces. Several phenanthrene-degrading bacteria were later isolated from the leaves and identified with a high 16S rDNA sequence similarity to the genera Pseudomonas, Microbacterium, Rhizobium, and Deinococcus.  相似文献   
5.
Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.  相似文献   
6.
Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 108 most probable number (MPN) g?1 of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l?1 day?1. Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.  相似文献   
7.
Many members of the sphingomonad genus isolated from different geological areas can degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs) and related compounds. These sphingomonads such as Sphingobium yanoikuyae strain B1, Novosphingobium aromaticivorans strain F199, and Sphingobium sp. strain P2 have been found to possess a unique group of genes for aromatic degradation, which are distantly related with those in pseudomonads and other genera reported so far both in sequence homology and gene organization. Genes for aromatics degradation in these sphingomonads are complexly arranged; the genes necessary for one degradation pathway are scattered through several clusters. These aromatic catabolic gene clusters seem to be conserved among many other sphingomonads such as Sphingobium yanoikuyae strain Q1, Sphingomonas paucimobilis strain TNE12, S. paucimobilis strain EPA505, Sphingobium agrestis strain HV3, and Sphingomonas chungbukensis strain DJ77. Furthermore, some genes for naphthalenesulfonate degradation found in Sphingomonas xenophaga strain BN6 also share a high sequence homology with their homologues found in these sphingomonads. On the other hand, protocatechuic catabolic gene clusters found in fluorene-degrading Sphingomonas sp. strain LB126 appear to be more closely related with those previously found in lignin-degrading S. paucimobilis SYK-6 than the genes in this group of sphingomonads. This review summarizes the information on the distribution of these strains and relationships among their aromatic catabolic genes.  相似文献   
8.
Sphingomonas sp. strain P2, which is capable of utilizing phenanthrene as a sole carbon and energy source, was isolated from petroleum-contaminated soil in Thailand. Gas chromatography-mass spectrometry and (1)H and (13)C nuclear magnetic resonance analyses revealed two novel metabolites from the phenanthrene degradation pathway. One was identified as 5,6-benzocoumarin, which was derived by dioxygenation at the 1- and 2-positions of phenanthrene, and the other was determined to be 1,5-dihydroxy-2-naphthoic acid. Other metabolites from phenanthrene degradation were identified as 7, 8-benzocoumarin, 1-hydroxy-2-naphthoic acid and coumarin. From these results, it is suggested that strain P2 can degrade phenanthrene via dioxygenation at both 1,2- and 3,4-positions followed by meta-cleavage.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号