首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   10篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   15篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有114条查询结果,搜索用时 218 毫秒
1.
2.
3.
We attempted to indicate the requirements for biomedical applications of SIMS microscopy. Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue. Furthermore, it is often necessary to correlate ionic and light microscope images. This implies a common methodological approach to sample preparation for both microscopes. The use of low or high mass resolution depends on the elements studied and their concentrations. To improve the acquisition and processing of images, digital imaging systems have to be designed and require both ionic and optical image superimposition. However, the images do not accurately reflect element concentration; a relative quantitative approach is possible by measuring secondary ion beam intensity. Using an internal reference element (carbon) and standard curves the results are expressed in micrograms/mg of tissue. Despite their limited lateral resolution (0.5 microns) the actual SIMS microscopes are very suitable for the resolution of biomedical problems posed by action modes and drug localization in human pathology. SIMS microscopy should provide a new tool for metabolic radiotherapy by facilitating dose evaluation. The advent of high lateral resolution SIMS imaging (less than 0.1 microns) should open up new fields in biomedical investigation.  相似文献   
4.

Aims/hypothesis

Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia.

Methods

Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor.

Results

PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death.

Conclusions

In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.  相似文献   
5.
Obesity is a multifactorial metabolic disorder characterized by low grade chronic inflammation. Rare and novel mutations in genes which are vital in several key pathways have been reported to alter the energy expenditure which regulates body weight. The TP53 or p53 gene plays a prominent role in regulating various metabolic activities such as glycolysis, lipolysis, and glycogen synthesis. Recent genome-wide association studies reported that tumor suppressor gene p53 variants play a critical role in the predisposition of type 2 diabetes and obesity. Till date, no reports are available from the Arabian population; hence the present study was intended to assess the association between p53 variants with risk of obesity development in the Saudi population. We have selected three p53 polymorphisms, rs1642785 (C > G), and rs9894946 (A > G), and rs1042522 (Pro72Arg; C > G) and assessed their association with obesity risk in the Saudi population. Phenotypic and biochemical parameters were also evaluated to check their association with p53 genotypes and obesity. Genotyping was carried out on 136 obese and 122 normal samples. We observed that there is significantly increased prevalence p52 Pro72Arg (rs1042522) polymorphism in obese persons when compared to controls at GG genotype in overall comparison (OR: 2.169, 95% CI: 1.086-4.334, p = 0.02716). Male obese subjects showed three-fold higher risk at GG genotype (OR: 3.275, 95% CI: 1.230-8.716, p = 0.01560) and two-fold risk at G allele (OR: 1.827, 95% CI: 1.128-2.958, p = 0.01388) of p53 variant Pro72Arg respectively. This variant has also shown significant influence on cholesterol, LDL level, and random insulin levels in obese subjects (p ≤ 0.05). In conclusion, p53 Pro72Arg variant is highly prevalent among obese individuals and may act as a genetic modifier for obesity development among Saudis.  相似文献   
6.
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model''s primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.  相似文献   
7.
Light‐induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase‐independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI‐derived DNase II (LEI/L‐DNase II), a caspase‐independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro‐survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L‐DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase‐independent pathways.  相似文献   
8.
We present an analytical model that unifies two of the most influential theories in community ecology, namely, island biogeography and niche theory. Our model captures the main elements of both theories by incorporating the combined effects of area, isolation, stochastic colonization and extinction processes, habitat heterogeneity, and niche partitioning in a unified, demographically based framework. While classical niche theory predicts a positive relationship between species richness and habitat heterogeneity, our unified model demonstrates that area limitation and dispersal limitation (the main elements of island biogeography) may create unimodal and even negative relationships between species richness and habitat heterogeneity. We attribute this finding to the fact that increasing heterogeneity increases the potential number of species that may exist in a given area (as predicted by niche theory) but simultaneously reduces the amount of suitable area available for each species and, thus, increases the likelihood of stochastic extinction. Area limitation, dispersal limitation, and low reproduction rates intensify the latter effect by increasing the likelihood of stochastic extinction. These analytical results demonstrate that the integration of island biogeography and niche theory provides new insights about the mechanisms that regulate the diversity of ecological communities and generates unexpected predictions that could not be attained from any single theory.  相似文献   
9.
Mokeichev A  Okun M  Barak O  Katz Y  Ben-Shahar O  Lampl I 《Neuron》2007,53(3):413-425
It was recently discovered that subthreshold membrane potential fluctuations of cortical neurons can precisely repeat during spontaneous activity, seconds to minutes apart, both in brain slices and in anesthetized animals. These repeats, also called cortical motifs, were suggested to reflect a replay of sequential neuronal firing patterns. We searched for motifs in spontaneous activity, recorded from the rat barrel cortex and from the cat striate cortex of anesthetized animals, and found numerous repeating patterns of high similarity and repetition rates. To test their significance, various statistics were compared between physiological data and three different types of stochastic surrogate data that preserve dynamical characteristics of the recorded data. We found no evidence for the existence of deterministically generated cortical motifs. Rather, the stochastic properties of cortical motifs suggest that they appear by chance, as a result of the constraints imposed by the coarse dynamics of subthreshold ongoing activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号