首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2021年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

The tomato–potato psyllid (TPP) Bactericera cockerelli, is a serious pest of solanaceous crops. Some populations are becoming pesticide-resistant, increasing the need for alternatives such as biological control (BC). This approach may be improved by combining different species of BC agents. We conducted three separate experiments to test four BC agents, either alone or combined with others: (1) A laboratory assay to test the effect of buckwheat (Fagopyrum esculentum) and alyssum (Lobularia maritima) flowers on the longevity of females of the parasitic wasp Tamarixia triozae; (2) A no-choice laboratory assay to investigate the consumption of B. cockerelli life stages by the predatory bug Engytatus nicotianae; (3) A cage experiment in a greenhouse to assess four natural enemy species against B. cockerelli on tomatoes: these were the predators Cleobora mellyi, Amblydromalus limonicus, E. nicotianae, and T. triozae. Access to buckwheat flowers allowed female T. triozae to live for an average of 10.9 days compared to 2.1 days with alyssum and 1.4 day with water but did not improve the BC of B. cockerelli. Adult E. nicotianae preyed on all offered B. cockerelli stages. In experiment 3, combinations of T. triozae with A. limonicus or E. nicotianae were not significantly better than single natural enemy species, except for the reduction of nymphal populations when A. limonicus and T. triozae were combined. Although there were few significant reductions in numbers of TPP when using natural enemy species combinations, some species showed good potential when used alone. We suggest testing earlier release of combinations of natural enemy for evaluate its impact on TPP.

  相似文献   
2.
Earlier study at a national scale has shown that insect pests in agriculture can develop resistance to natural enemies following ongoing expansion and simplification of agricultural systems. Here, we used 25 years of field-sampling data segmented into three distinct ecoregions in New Zealand to show that parasitism rate of a key pasture pest (Listronotus bonariensis, Argentine stem weevil) by the introduced parasitoid Microctonus hyperodae has significantly declined. However, this decline has not happened simultaneously in all three ecoregions but with a one year time-lag. The variation in parasitism rate trends might be attributed to subsets of the weevil populations that became resistant to their biocontrol agent once having been exposed to seven years selection pressure (ca. 14 generations) since the parasitoid releases. This result supports the hypothesis that adaptation leading to resistance might have similarly occurred in different parts of the country indicating that the genetic variation needed for the acquisition of resistance was equally present everywhere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号