首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Transformation of the nuclear, chloroplast, and mitochondrial genomes can now be accomplished inChlamydomonas reinhardtii. Many biosynthetic pathways are carried out in the chloroplast, and efforts to manipulate these pathways will require that gene products be directed to this compartment. Chloroplast proteins are encoded in either the chloroplast or nuclear genome. In the latter case they are synthesized in the cytoplasm and imported post-translationally into the chloroplast. Thus, strategies for expressing foreign genes or overexpressing endogenous genes whose products reside in the chloroplast could involve either genome. This paper reviews the present status of transformation methodology for the nuclear and chloroplast genomes inChlamydomonas. Considerations for expressing gene products in the chloroplast are discussed. Experimental evidence for homologous recombination during transformation of the nuclear genome is presented.  相似文献   
2.

Background

Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes.

Methods and Findings

Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children.

Conclusions

We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes.  相似文献   
3.
Biomarker discovery aims to find small subsets of relevant variables in ‘omics data that correlate with the clinical syndromes of interest. Despite the fact that clinical phenotypes are usually characterized by a complex set of clinical parameters, current computational approaches assume univariate targets, e.g. diagnostic classes, against which associations are sought for. We propose an approach based on asymmetrical sparse canonical correlation analysis (SCCA) that finds multivariate correlations between the ‘omics measurements and the complex clinical phenotypes. We correlated plasma proteomics data to multivariate overlapping complex clinical phenotypes from tuberculosis and malaria datasets. We discovered relevant ‘omic biomarkers that have a high correlation to profiles of clinical measurements and are remarkably sparse, containing 1.5–3% of all ‘omic variables. We show that using clinical view projections we obtain remarkable improvements in diagnostic class prediction, up to 11% in tuberculosis and up to 5% in malaria. Our approach finds proteomic-biomarkers that correlate with complex combinations of clinical-biomarkers. Using the clinical-biomarkers improves the accuracy of diagnostic class prediction while not requiring the measurement plasma proteomic profiles of each subject. Our approach makes it feasible to use omics'' data to build accurate diagnostic algorithms that can be deployed to community health centres lacking the expensive ‘omics measurement capabilities.  相似文献   
4.
Plasmodium falciparum glucose 6-phosphate dehydrogenase (Pf Glc6PD), compared to other Glc6PDs has an additional 300 amino acids at the N-terminus. They are not related to Glc6PD but are similar to a family of proteins (devb) of unknown function, some of which are encoded next to Glc6PD in certain bacteria. The human devb homologue has recently been shown to have 6-phosphogluconolactonase (6PGL) activity. This suggests Pf Glc6PD may be a bifunctional enzyme, the evolution of which has involved the fusion of adjacent genes. Further functional analysis of Pf Glc6PD has been hampered because parts of the gene could not be cloned. We have isolated and sequenced the corresponding Plasmodium berghei gene and shown it encodes an enzyme (Pb Glc6PD) with the same structure as the P. falciparum enzyme. Pb Glc6PD is 950 amino acids long with significant sequence similarity in both the devb and Glc6PD domains with the P. falciparum enzyme. The P. berghei enzyme does not have an asparagine-rich segment between the N and C halves and it contains an insertion at the same point in the Glc6PD region as the P. falciparum enzyme but the insertion in the P. berghei is longer (110 versus 62 amino acids) and unrelated in sequence to the P. falciparum insertion. Though expression of this enzyme in bacteria produced largely insoluble protein, conditions were found where the full-length enzyme was produced in a soluble form which was purified via a histidine tag. We show that this enzyme has both Glc6PD and 6PGL activities. Thus the first two steps of the pentose phosphate pathway are catalysed by a single novel bifunctional enzyme in these parasites.  相似文献   
5.
Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号