首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   30篇
  2021年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   16篇
  2014年   17篇
  2013年   25篇
  2012年   21篇
  2011年   18篇
  2010年   27篇
  2009年   28篇
  2008年   17篇
  2007年   20篇
  2006年   14篇
  2005年   23篇
  2004年   19篇
  2003年   8篇
  2002年   11篇
  2001年   10篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   12篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   19篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有448条查询结果,搜索用时 546 毫秒
1.
We have studied the effect of incubation of intact cells with insulin on insulin receptor kinase activity. Following exposure of rat adipocytes to insulin, cells were solubilized and insulin receptors purified by specific immunoprecipitation or by insulin affinity chromatography. Kinase activity of the receptors, as measured by phosphorylation of histone 2B, was then determined. Insulin treatment of the cells resulted in a 10-20-fold increase in histone kinase activity of the subsequently isolated insulin receptors. The insulin effect was half-maximal at 3 s and maximal within 15 s of exposure, was dose-dependent (EC50 = 21 ng/ml), and was rapidly reversible following dissociation of insulin from the cells. The insulin effect in intact cells on insulin receptor kinase activity could be partially reversed in vitro by dephosphorylation of the isolated receptors by alkaline phosphatase. It is proposed that: in intact cells, insulin causes alterations in insulin receptors, such that their kinase activity toward non-receptor substrates increases; increased insulin receptor kinase activity following insulin stimulation in intact cells is, at least in part, the result of an increased phosphate content of the receptors; and effects of insulin on insulin receptors in intact cells can be preserved during receptor isolation and thus can be measured in a cell-free system.  相似文献   
2.
3.
4.
5.
We have studied the variations in the number of insulin receptor and insulin receptor mRNA levels in (Hep G2) cells in response to growth and insulin treatment. The levels of insulin receptors are relatively low in growing cells. After approximately 5 days in culture, if cells are not refed they cease to divide and the number of receptors/cell increases, reaching 4 times the initial values by the 9th day. Refeeding the cells completely prevented both growth arrest and the increase in insulin receptor number. Insulin added daily to cells at 0.33 microM caused receptor down-regulation but did not prevent a 3-fold increase in binding with growth arrest. Pulse-chase studies of metabolically labeled ([35S]methionine) cells showed that the receptor degradation rate (apparent t 1/2, 18-20 h) was comparable in rapidly growing versus growth-arrested cells. The increased receptor level in non-refed cells is not due to generation of a soluble factor by confluent cells, nor is it caused by depletion of insulin, glucose, or insulin-like growth factor I from the culture medium. The levels of insulin receptor mRNA measured on Northern blots increased in growth-arrested cells in parallel to the increase in receptor number. The mRNA value begins to increase from the 3rd day in culture and by the 9th day reaches a level 6.0 times that on the 3rd day. Chronic insulin-induced receptor down-regulation did not alter insulin receptor mRNA levels at any time point studied. These data demonstrate that the increase in insulin receptor number/cell in growth-arrested cells is paralleled by an increase in insulin receptor mRNA content with no change in the receptor degradation rates. This suggests that the increase in the number of insulin receptors is due to enhanced receptor synthesis due to increased receptor mRNA content. Conversely, down-regulation of the insulin receptor does not affect the level of insulin receptor mRNA and thus must be due to increased receptor degradation.  相似文献   
6.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
7.
8.
9.
An insulin receptor mutant was constructed utilizing site-directed mutagenesis to delete the Arg-Lys-Arg-Arg basic amino acid cleavage site (positions 720-723) from the cDNA encoding the human insulin proreceptor. This mutant was transfected into Chinese hamster ovary cells. Immunoprecipitation of metabolically labeled cells revealed a 205-kDa proreceptor which bound to wheat germ agglutinin. Processed 130-kDa alpha and 95-kDa beta subunits were also observed and contained approximately 20% as much protein as the proreceptor on a molar basis. Trypsin digestion of intact metabolically labeled cells decreased the proreceptor band by 80%. Pulse-chase studies revealed a half-life of 28 h for the proreceptor. When cells were photolabeled with 125I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1 (NAPA)-insulin, the proreceptor incorporated 10% as much label as the 130-kDa alpha subunit in spite of a 5-fold molar excess. Incubation of NAPA-labeled cells at 37 degrees C for 20 min resulted in 60% of the labeled subunits, but little labeled proreceptor, becoming resistant to trypsin degradation. Immunoprecipitation of NAPA-insulin-stimulated cells with anti-phosphotyrosine antibodies revealed that 62% of the processed labeled receptors, but very little proreceptor, contained phosphotyrosine. Thus, this mutant receptor is synthesized, glycosylated, and expressed on the cell surface as uncleaved proreceptor, although some processing to alpha and beta subunits still occurs. It exhibits a markedly decreased affinity for insulin, and when insulin is bound to, demonstrates defective internalization, down-regulation, and autophosphorylation. These data suggest that cleavage of the mutant proreceptor into subunits is required not only for the development of high affinity binding sites, but also for normal transduction of the signal which activates the beta subunit tyrosine kinase.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号