首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有38条查询结果,搜索用时 46 毫秒
1.
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14 882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membrane-spanning region with a predicted -helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.  相似文献   
2.
The level of DNA methylation in Daucus carota was found to be tissue specific, but no simple correlation between developmental stage or age of tissue and the level of DNA methylation was found. Among three different suspension culture lines from the same variety grown under identical conditions, large differences in the level of DNA methylation were observed. The highest and lowest levels were found in two embryogenic cell lines originating from the same clone. Suspension cells from one of the embryogenic cell lines were fractionated into three morphologically defined cell types using Percoll gradient density centrifugation, and the uniformity of these fractions was evaluated by image analysis. The three cell types showed different levels of DNA methylation. The lowest level was found in the fraction containing the precursor cells of somatic embryos.  相似文献   
3.
4.
ESAT-6 (the 6 kDa early secreted antigenic target) protein species in short-term culture filtrate of Mycobacterium tuberculosis were separated in a 4-5 narrow range pI gradient two-dimensional gel electrophoresis (2-DE). Eight ESAT-6 protein species were analyzed in detail by peptide mass fingerprinting matrix-assisted laser desorption/ionization-mass spectrometry as well as by electrospray ionization-tandem mass spectrometry. An N-terminal Thr acetylation was identified in four species and a C-terminal truncation was identified in two species. In 2-DE blot overlay assays, the recombinant 10 kDa culture filtrate protein (CFP10) discriminated N-terminal acetylated and nonacetylated ESAT-6 by differential interaction, whereas removal of the C-terminal 11 residues of ESAT-6 had no effects thereon. This example shows that the access to the protein species level can be a prerequisite to understand regulation of protein-protein interaction.  相似文献   
5.
Analysis of mannose selection used for transformation of sugar beet   总被引:39,自引:0,他引:39  
Various factors affecting mannose selection for the production of transgenic plants were studied using Agrobacterium tumefaciens-mediated transformation of sugar beet (Beta vulgaris L.) cotyledonary explants. The selection system is based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable gene and mannose as selective agent. Transformation frequencies were about 10-fold higher than for kanamycin selection but were only obtained at low selection pressures (1.0–1.5 g/l mannose) where 20–30% of the explants produced shoots. The non-transgenic shoots were eliminated during the selection procedure by a stepwise increase in the mannose concentration up to 10 g/l. Analysis of the transformed shoots showed that the PMI activity varied from 2.4 mU/mg to 350 mU/mg but the expression level was independent of the selection pressure. Complete resistance to mannose of transformed shoots was observed already at low PMI activities (7.5 mU/mg). Genomic DNA blot analysis confirmed the presence of the PMI gene in all transformants analysed. The possible mode of action of mannose selection compared to other selection methods is discussed.  相似文献   
6.
We introduce quantitative polymerase chain reaction (qPCR) primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA) molecule at the 5'-end. In qPCR, the 5'-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5'-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5'-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5'-o-TINA modified primers allows for a further reduction (>45% or approximately one hour) in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5'-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5'-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions.  相似文献   
7.
Summary The xylose isomerase genes (xylA) from Thermoanaerobacterium thermosulfurogenes and Streptomyces rubiginosus were introduced and expressed in three plant species (potato, tobacco and tomato) and transgenic plants were selected on xylose-containing medium. The xylose isomerase genes were transferred to explants of the target plant by Agrobacterium-mediated transformation. The xylose isomerase genes were expressed under the control of the enhanced cauliflower mosaic virus 35S promoter and the Ω′ translation enhancer sequence from tobacco mosaic virus. In potato and tomato, xylose isomerase selection was more efficient than the established kanamycin selection. The level of enzyme activity in the regenerated transgenic plants selected on xylose was 5–25-fold higher than the enzyme activity in control plants selected on kanamycin. The xylose isomerase system enables transgenic cells to utilize xylose as a carbohydrate source. In contrast to antibiotic or herbicide resistance-based system where transgenic cells survive on a selective medium but nontransgenic cells are killed, the xylose system is an example of a positive selection system where transgenic cells proliferate while non-transgenic cells are starved but still survive. The results show that a new selection method, is established. The xylose system is devoid of the disadvantages of antibiotic or herbicide selection, and depends on an enzyme which is already being widely utilized in specific food processes and that is generally recognized as safe for use in the starch industry.  相似文献   
8.
9.
Aminoglycoside antibiotics are frequently used for the selection of transgenic plant cells. However, for a number of species aminoglycoside selection is inefficient. The objective of the present study was to elucidate factors affecting the phytoloxic effects of aminoglycoside antibiotics. Using non-transgenic sugar beet cotyledonary explants the interaction between three aminoglycoside antibiotics, kanamycin, neomycin and hygromycin. and Ca2+ was studied by monitoring the effects on growth and shoot formation. The phytotoxic effects of the aminoglycoside antibiotics were strongly dependent on the calcium concentration in the growth media. At comparable levels of the antibiotics (kanamycin 170 μ M , neomycin 220 μ M , hygromycin 9.5 μ M , an elevation of the calcium concentration from 1 to 10 m M resulted in growth increases of approximately 3-, 2.5- and 8-fold, respectively, and shoot formation was enhanced 1.5-, 2-and 6-fold, respectively. At lower concentrations of the antibiotics, the toxic effect was nearly abolished by increasing the calcium concentration. Additional magnesium, sodium and ammonium did not affect the phytotoxic effects of the aminoglycoside antibiotics. Moreover, the phytotoxic effects of the herbicides glyphosate and phosphinothricin were not decreased by additional calcium. These data suggest the existence of a specific interaction between calcium and aminoglycoside anfibiotics in plants. The implications of these results for the use of aminoglycosides as selective agents in plant transformation are discussed.  相似文献   
10.
Vanillin is one of the world''s most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world''s vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker''s yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.In 2007, the global market for flavor and fragrance compounds was an impressive $20 billion, with an annual growth of 11 to 12%. The isolation and naming of vanillin (3-methoxy-4-hydroxybenzaldehyde) as the main component of vanilla flavor in 1859 (8), and the ensuing chemical synthesis in 1874 (41), in many ways marked the true birth of this industry, and this compound remains the global leader in aroma compounds. The original source of vanillin is the seed pod of the vanilla orchid (Vanilla planifolia), which was grown by the Aztecs in Mexico and brought to Europe by the Spaniards in 1520. Production of natural vanillin from the vanilla pod is a laborious and slow process, which requires hand pollination of the flowers and a 1- to 6-month curing process of the harvested green vanilla pods (37). Production of 1 kg of vanillin requires approximately 500 kg of vanilla pods, corresponding to the pollination of approximately 40,000 flowers. Today, only about 0.25% (40 tons out of 16,000) of vanillin sold annually originates from vanilla pods, while most of the remainder is synthesized chemically from lignin or fossil hydrocarbons, in particular guaiacol. Synthetically produced vanillin is sold for approximately $15 per kg, compared to prices of $1,200 to $4,000 per kg for natural vanillin (46).An attractive alternative is bioconversion or de novo biosynthesis of vanillin; for example, vanillin produced by microbial conversion of the plant constituent ferulic acid is marketed at $700 per kilogram under the trade name Rhovanil Natural (produced by Rhodia Organics). Ferulic acid and eugenol are the most attractive plant secondary metabolites amenable for bioconversion into vanillin, since they can be produced at relatively low costs: around $5 per kilogram (37). For the bioconversion of eugenol or ferulic acid into vanillin, several microbial species have been tested, including gram-negative bacteria of the Pseudomonas genus, actinomycetes of the genera Amycolatopsis and Streptomyces, and the basidiomycete fungus Pycnoporus cinnabarinus (19, 23, 25, 27, 31, 34, 35, 36, 45, 48). In experiments where the vanillin produced was absorbed on resins, Streptomyces cultures afforded very high vanillin yields (up to 19.2 g/liter) and conversion rates as high as 55% were obtained (15). Genes for the responsible enzymes from some of these organisms were isolated and expressed in Escherichia coli, and up to 2.9 g/liter of vanillin were obtained by conversion of eugenol or ferulic acid (1, 3, 32, 49).Compared to bioconversion, de novo biosynthesis of vanillin from a primary metabolite like glucose is much more attractive, since glucose costs less than $0.30/kilogram (42). One route for microbial production of vanillin from glucose was devised by Frost and coworker Li (6, 20), combining de novo biosynthesis of vanillic acid in E. coli with enzymatic in vitro conversion of vanillic acid to vanillin. 3-Dehydroshikimic acid is an intermediate in the shikimate pathway for biosynthesis of aromatic amino acids, and the recombinant E. coli was engineered to dehydrate this compound to form protocatechuic acid (3,4-dihydroxybenzoic acid) and methylate this to form vanillic acid. The vanillic acid was subsequently converted into vanillin in vitro using carboxylic acid reductase isolated from Neurospora crassa. The main products of the in vivo step were protocatechuic acid, vanillic acid, and isovanillic acid in an approximate ratio of 9:4:1, indicating a bottleneck at the methylation reaction and nonspecificity of the OMT (O-methyltransferase) enzyme for the meta-hydroxyl group of protocatechuic acid. Serious drawbacks of this scheme are the lack of an in vivo step for the enzymatic reduction of vanillic acid, demanding the addition of isolated carboxylic acid reductase and costly cofactors such as ATP, NADPH, and Mg2+, and the generation of isovanillin as a contaminating side product.In this study, we have genetically engineered single-recombination microorganisms to synthesize vanillin from glucose, according to the metabolic route depicted in Fig. Fig.1.1. To avoid the synthesis of isovanillin as an undesired side product, a large array of OMTs was screened for the desired high substrate specificity, and an appropriate enzyme was identified. A synthetic version of an aromatic carboxylic acid reductase (ACAR) gene, optimized for yeast codon usage, was introduced to achieve the reduction step. The vanillin pathway was introduced into both Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, and significant levels of vanillin production were obtained in both organisms. Vanillin β-d-glucoside is the form in which vanillin accumulates and is stored in the fresh pod of the vanilla orchid (Vanilla planifolia). During the “curing” process of the pod, β-glucosidases are liberated and facilitate a partial conversion of the vanillin β-d-glucoside into vanillin. Upon consumption or application, the conversion of vanillin β-d-glucoside into free vanillin by enzymes in the saliva or in the skin microflora can provide for a slow-release effect that prolongs and augments the sensory event, as is the case for other flavor glycosides investigated, such as menthol glucoside (14, 16). In addition to the increased value of vanillin β-d-glucoside as an aroma or flavor compound, production of the glucoside in yeast may offer several advantages. Vanillin β-d-glucoside is more water soluble than vanillin, but most importantly, compounds such as vanillin in high concentrations are toxic to many living cells (4). It has been shown that glucosides of toxic compounds are less toxic to yeasts (24). We found this to be the case with vanillin and S. cerevisiae yeast as well. Thus, to facilitate storage and accumulation of higher vanillin yields, we introduced a step for vanillin glucosylation in S. pombe.Open in a separate windowFIG. 1.Biosynthetic scheme for de novo biosynthesis of vanillin in Schizosaccharomyces pombe and outline of the different vanillin catabolites and metabolic side products observed in different yeast strains and constructs. Gray arrows, primary metabolic reactions in yeast; black arrows, enzyme reactions introduced by metabolic engineering; diagonally striped arrows, undesired inherent yeast metabolic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号