首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1985年   1篇
排序方式: 共有26条查询结果,搜索用时 62 毫秒
1.
Lantibiotic peptides contain thioether bridges termed lanthionines that are putatively generated by dehydration of Ser and Thr residues followed by Michael addition of cysteine residues within the peptide. The LanB and LanC proteins have been proposed to catalyze the dehydration and formation of the thioether rings, respectively. We report here the first heterologous overexpression in Escherichia coli of SpaB, the putative dehydratase for subtilin. Sequence analysis of spaB revealed several nucleotide differences with current gene database entries. The solubility of SpaB was increased dramatically when co-expressed with GroEL/ES, and soluble His(6)-tagged SpaB was purified. The protein is at least a dimer, and interaction between SpaB and SpaC was observed. SpaS the putative substrate for SpaB was overexpressed in E. coli as an intein fusion protein, and after cleavage, the peptide was obtained in good yield.  相似文献   
2.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   
3.
It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.  相似文献   
4.

Background

Avoidance of allergens is still recommended as the first and best way to prevent allergic illnesses and their comorbid diseases. Despite a variety of attempts there has been very limited success in the area of environmental control of allergic disease. Our objective was to identify a non-invasive, non-pharmacological method to reduce indoor allergen loads in atopic persons' homes and public environments. We employed a novel in vivo approach to examine the possibility of using aluminum sulfate to control environmental allergens.

Methods

Fifty skin test reactive patients were simultaneously skin tested with conventional test materials and the actions of the protein/glycoprotein modifier, aluminum sulfate. Common allergens, dog, cat, dust mite, Alternaria, and cockroach were used in the study.

Results

Skin test reactivity was significantly reduced by the modifier aluminum sulfate. Our studies demonstrate that the effects of histamine were not affected by the presence of aluminum sulfate. In fact, skin test reactivity was reduced independent of whether aluminum sulfate was present in the allergen test material or removed prior to testing, indicating that the allergens had in some way been inactivated.

Conclusion

Aluminum sulfate was found to reduce the in vivo allergic reaction cascade induced by skin testing with common allergens. The exact mechanism is not clear but appears to involve the alteration of IgE-binding epitopes on the allergen. Our results indicate that it may be possible to diminish the allergenicity of an environment by application of the active agent aluminum sulfate, thus producing environmental control without complete removal of the allergen.  相似文献   
5.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
6.
7.
There are gaps in existing understanding of fungal pellet growth dynamics. We used scanning electron microscopy (SEM) for morphological characterization of the biomass organization of Termitomyces pellets for seven species: T. microcarpus (TMI1), T. albuminosus (TAL1, TAL2), T. striatus (TSTR), T. aurantiacus (TAUR), T. heimii (THE1, THE2), T. globulus (TGLO) and T. clypeatus (TCL1, TCL2, TCL3, TCL4, TCL5). We assessed the utility of SEM for morphological and structural characterization of Termitomyces spp. in three dimensional (3D) pellet form to identify ideal pellet morphology for industrial use. Typological classification of Termitomyces species was based on furrows, isotropy, total motifs and fractal dimensions. The pellets formed were entangled and exhibited highly compacted mycelial mass with microheterogeneity and microporosity. The mean density of furrows of Termitomyces species was between 10,000 and 11,300 cm/cm2, percentage isotropy was 30?80 and total motifs varied from 300 to 2500. TGLO exhibited the highest furrow mean density, 11243 cm/cm2, which indicated a compact, cerebroid structure with complex ridges and furrows, whereas TAL2 exhibited the lowest furrow density. TMI1a exhibited a high percentage isotropic value, 74.6, TSTR exhibited the lowest, 30.9. Total motif number also was used as a typological classification parameter. Fractal values were 2.64?2.78 for various submerged conditions of Termitomyces species. TAL1 exhibited the highest fractal dimension and TAL2 the lowest, which indicates the complexity of branching patterns. Three-dimensional SEM image analysis can provide insight into pellet micromorphology and is a powerful tool for exploring topographical details of pellets.  相似文献   
8.
We studied the effects of tempol, an oxygen radical scavenger, on hydrosaline balance in rats with acute sodium overload. Male rats with free access to water were injected with isotonic (control group) or hypertonic saline solution (0.80 mol/l NaCl) either alone (Na group) or with tempol (Na-T group). Hydrosaline balance was determined during a 90 min experimental period. Protein expressions of aquaporin 1 (AQP1), aquaporin 2 (AQP2), angiotensin II (Ang II) and endothelial nitric oxide synthase (eNOS) were measured in renal tissue. Water intake, creatinine clearance, diuresis and natriuresis increased in the Na group. Under conditions of sodium overload, tempol increased plasma sodium and protein levels and increased diuresis, natriuresis and sodium excretion. Tempol also decreased water intake without affecting creatinine clearance. AQP1 and eNOS were increased and Ang II decreased in the renal cortex of the Na group, whereas AQP2 was increased in the renal medulla. Nonglycosylated AQP1 and eNOS were increased further in the renal cortex of the Na-T group, whereas AQP2 was decreased in the renal medulla and was localized mainly in the cell membrane. Moreover, p47-phox immunostaining was increased in the hypothalamus of Na group, and this increase was prevented by tempol. Our findings suggest that tempol causes hypernatremia after acute sodium overload by inhibiting the thirst mechanism and facilitating diuresis, despite increasing renal eNOS expression and natriuresis.  相似文献   
9.
10.
Irinotecan is a widely used topoisomerase-I-inhibitor with a very narrow therapeutic window because of its severe toxicity. In the current study we have examined the effects of fasting prior to irinotecan treatment on toxicity and anti-tumor activity. FabplCre;Apc15lox/+ mice, which spontaneously develop intestinal tumors, of 27 weeks of age were randomized into 3-day fasted and ad libitum fed groups, followed by treatment with a flat-fixed high dose of irinotecan or vehicle. Side-effects were recorded until 11 days after the start of the experiment. Tumor size, and markers for cell-cycle activity, proliferation, angiogenesis, and senescence were measured. Fasted mice were protected against the side-effects of irinotecan treatment. Ad libitum fed mice developed visible signs of discomfort including weight loss, lower activity, ruffled coat, hunched-back posture, diarrhea, and leukopenia. Irinotecan reduced tumor size in fasted and ad libitum fed groups similarly compared to untreated controls (2.4 ± 0.67 mm and 2.4 ± 0.82 mm versus 3.0 ± 1.05 mm and 2.8 ± 1.08 mm respectively, P < 0.001). Immunohistochemical analysis showed reduced proliferation, a reduced number of vascular endothelial cells, and increased levels of senescence in tumors of both irinotecan treated groups. In conclusion, 3 days of fasting protects against the toxic side-effects of irinotecan in a clinically relevant mouse model of spontaneously developing colorectal cancer without affecting its anti-tumor activity. These results support fasting as a powerful way to improve treatment of colorectal carcinoma patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号