首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   3篇
  1965年   1篇
  1916年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The effects of freezing rate, suspending fluid and age of culture on the ability of four strains of Campylobacter pylori to survive and recover from freeze-drying were examined. Freeze-drying by standard procedures generally resulted in an overall loss in viability of between 3 and 7 log units. The exact cause of poor recovery by C. pylori was not established but strain differences were detected, with NCTC 11637 (type strain) surviving better than NCTC 11638 and NCTC 11639. Recovery of the poorest growing strain (NE 26695) was notably more erratic. The largest loss in viability occurred at the primary drying stage. Losses resulting from freezing and secondary drying were less marked and the rate of freezing had only a marginal effect on recovery. Nineteen different freeze-drying suspending fluids were investigated. Overall the best recovery results were obtained with 5% inositol-broth (or horse serum) plus 25% glucose, at pH 7.0, in which loss of viability was typically about 4 log units. Other factors, such as age of culture and number of viable bacteria in the before-dry suspension, did not have a significant effect on survival. We conclude from these results that C. pylori can survive freeze-drying, albeit in small numbers, but the degree of recovery is apparently largely strain dependent.  相似文献   
2.
本文记述采自新疆的皿蛛科蜘蛛一新届——颚齿蛛属Maxillodens gen.nov.及其一新种——鞭状颚齿蛛M.flageuatus sp.nov。  相似文献   
3.
α-Helical coiled coils (CCs) are ubiquitous tertiary structural domains that are often found in mechanoproteins. CCs have mechanical rigidity and are often involved in force transmission between protein domains. Although crystal structures of CCs are available, information about their conformational flexibility is limited. The role of hydrophobic interactions in determining the CC conformation is not clear. In this work we examined the mechanical responses of typical CCs and constructed a coarse-grained mechanical model to describe the conformation of the protein. The model treats α-helices as elastic rods. Hydrophobic bonds arranged in a repeated pattern determine the CC structure. The model is compared with molecular-dynamics simulations of CCs under force. We also estimate the effective bending and twisting persistence length of the CC. The model allows us to examine unconventional responses of the CC, including significant conformational amplification upon binding of a small molecule. We find that the CC does not behave as a simple elastic rod and shows complex nonlinear responses. These results are significant for understanding the role of CC structures in chemoreceptors, motor proteins, and mechanotransduction in general.  相似文献   
4.
Within island archipelagos, repeated ecological settings may lead to radiations wherein similar niches are recurrently occupied. Although it has been shown that species with common habitat requirements share particular traits, it remains relatively unexplored to what extent this may lead to the repeated evolution of almost identical phenotypes (phenocopies) and how this correlates with traits subjected to sexual selection. Exploring divergence patterns of ecological and sexual relevant traits within spiders seem promising to enhance our understanding of the relative role of natural and sexual selection. Here, we conduct a detailed morphological analysis on a large set of genital and non‐genital traits (morphometrics, colour pattern) within a radiation of the wolf spider genus Hogna Simon, 1885 on Galápagos and interpret these data, taking into account their known phylogenetic relationship. Our results show that recurrent environmental gradients have led to the parallel evolution of almost identical phenotypes, which not only proves that natural selection has driven morphological divergence, but also suggests that a similar genetic or developmental basis most likely underlies this divergence. Among‐species variation in genital traits in contrast rather reflects the phylogenetic relationships on Santa Cruz and San Cristóbal. The combination of these data indicate that speciation in this system is driven by the combined effect of ecological mechanisms and allopatric divergence in sexual traits. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 123–136.  相似文献   
5.
Temporal changes in allele frequencies were studied in host-associated populations of the small ermine moth Yponomeuta padellus. At one site, populations from three host plants (Sorbus aucuparia, Amelanchier larnarckii , and Crataegus spp.) were sampled annually during a four-year-period and analysed with 20 polymorphic allozyme markers. At two other sites, allele frequencies at 5- 6 enzyme loci of Y. padellus populations from two different host plants were also tested for consistency over a 13-year-pcriod. Significant allele frequency changes occurred in the short-term analysis, whereas allele frequencies remained relatively stable through time in the long-term analyses. Furthermore, allele frequencies of Y. padellus populations from Crataegus spp. were relatively stable compared to the other host populations. The role of the agents responsible for the observed patterns is discussed.  相似文献   
6.
A two-step procedure for the purification of 6-phosphogluconate dehydrogenase (EC 1.1.1.44; 6-PGDH) from sheep liver is described. The enzyme is directly bound to cellulose phosphate by batch extraction and eluted with a linear salt gradient. Purification is completed by affinity chromatography using NADP(+)-agarose. The result is 6-PGDH of high purity, greatly increased yield, and the highest specific activity yet achieved, with a significant reduction in the purification time.  相似文献   
7.
8.
Catastrophic hydraulic failure will likely be an important mechanism contributing to large‐scale tree dieback caused by increased frequency and intensity of droughts under global climate change. To compare the susceptibility of 22 temperate deciduous tree and shrub species to hydraulic failure during a record drought in the southeastern USA, we quantified leaf desiccation, native embolism, wood density, stomatal conductance and predawn and midday leaf water potential at four sites with varying drought intensities. At the two driest sites, there was widespread leaf wilting and desiccation, and most species exhibited predawn leaf water potentials of ≤3 MPa and >60% loss of xylem conductivity in branches. Although species with high wood density were more resistant to cavitation, they had higher levels of native embolism and greater canopy dieback than species with low wood density. This unexpected result can be explained by the failure of species with dense wood to avert a decline in water potential to dangerous levels during the drought. Leaf water potential was negatively correlated with wood density, and the relationship was strongest under conditions of severe water deficit. Species with low wood density avoided catastrophic embolism by relying on an avoidance strategy that involves partial drought deciduousness, higher sensitivity of stomata to leaf water potential and perhaps greater rooting depth. These species therefore maintained water potential at levels that ensured a greater margin of safety against embolism. These differences among species may mediate rapid shifts in species composition of temperate forests if droughts intensify due to climate change.  相似文献   
9.
In eukaryotic cells, actin filaments are involved in important processes such as motility, division, cell shape regulation, contractility, and mechanosensation. Actin filaments are polymerized chains of monomers, which themselves undergo a range of chemical events such as ATP hydrolysis, polymerization, and depolymerization. When forces are applied to F-actin, in addition to filament mechanical deformations, the applied force must also influence chemical events in the filament. We develop an intermediate-scale model of actin filaments that combines actin chemistry with filament-level deformations. The model is able to compute mechanical responses of F-actin during bending and stretching. The model also describes the interplay between ATP hydrolysis and filament deformations, including possible force-induced chemical state changes of actin monomers in the filament. The model can also be used to model the action of several actin-associated proteins, and for large-scale simulation of F-actin networks. All together, our model shows that mechanics and chemistry must be considered together to understand cytoskeletal dynamics in living cells.  相似文献   
10.
Cancer vaccines are an important component of the cancer immunotherapy toolkit enhancing immune response to malignant cells by activating CD4+ and CD8+ T cells. Multiple successful clinical applications of cancer vaccines have shown good safety and efficacy. Despite the notable progress, significant challenges remain in obtaining consistent immune responses across heterogeneous patient populations, as well as various cancers. We present a mechanistic mathematical model describing key interactions of a personalized neoantigen cancer vaccine with an individual patient’s immune system. Specifically, the model considers the vaccine concentration of tumor-specific antigen peptides and adjuvant, the patient’s major histocompatibility complexes I and II copy numbers, tumor size, T cells, and antigen presenting cells. We parametrized the model using patient-specific data from a clinical study in which individualized cancer vaccines were used to treat six melanoma patients. Model simulations predicted both immune responses, represented by T cell counts, to the vaccine as well as clinical outcome (determined as change of tumor size). This model, although complex, can be used to describe, simulate, and predict the behavior of the human immune system to a personalized cancer vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号