首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  1997年   1篇
  1965年   1篇
  1960年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
  1. Using intact cells of Chlorella, the effects of CO2 on thelevelsof oxidized and reduced forms of DPN and TPN in the lightandin the dark were investigated.
  2. It was found that the light-inducedchanges of the DPNH-levelwere not affected by the presenceor absence of CO2. On theother hand, the light-induced increaseof TPNH was suppressedin the presence of CO2 and the levelof TPNH which was raisedon illumination in the absence of CO2was lowered by the provisionof CO2.
  3. On the basis of thesefindings, it was concluded that TPNH,but not DPNH, is participating,in some way, in the mechanismof photosynthesis.
  4. Discussionswere made on the difference in the sites of participationofTPNH and of the photogenic reducing agent (R) in the pathofcarbon in photosynthesis.
(Received February 28, 1960; )  相似文献   
2.
EVOLUTIONARY CONSIDERATION ON 5-AMINOLEVULINATE SYNTHASE IN NATURE   总被引:1,自引:0,他引:1  
5-Aminolevulinic acid (ALA), a universal precursor of tetrapyrrole compounds can be synthesized by two pathways: the C5 (glutamate) pathway and ALA synthase. From the phylogenetic distribution it is shown that distribution of ALA synthase is restricted to the subclass of purple bacteria in prokaryotes, and further distributed to mitochondria of eukaryotes. The monophyletic origin of bacterial and eukaryotic ALA synthase is shown by sequence analysis of the enzyme. Evolution of ALA synthase in the subclass of purple bacteria is discussed in relation to the energy-generating and biosynthetic devices in subclasses of this bacteria.  相似文献   
3.
  1. By growing Chlorella protothecoides in a medium rich in glucoseand poor in nitrogen source (urea), entirely chlorophyll-lesscells, called "glucose-bleached’ cells, were obtained.These cells were found to have neither discernible plastid structuresnor photosynthetic activities. When these cells were incubatedin a nitrogenenriched mineral medium without added glucose,a remarkable formation of fully organized chloroplasts occurredin the light and only partially organized chloroplasts weredeveloped in darkness.
  2. In the dark-incubated algal cells asmall but appreciable amountof chlorophyll was formed, beingaccompanied by developmentof significant activities for thePMS- and FMN-catalyzed photophosphorylationsand the HILL reaction.The development of the capacity for performingphotosyntheticCO2-fixation, however, was negligible.
  3. During the processof "re-generation" of chloroplasts in thelight, there occurredactive formation of chlorophyll followedby development of allthe photic activities mentioned above.Chlorophyll formationas well as development of the photic activitiesproceeded firstin a manner of autocatalytic reaction and laterin the formof the first-order reaction. It was inferred thatthe light-absorbingagent which mediates the chlorophyll synthesisis chlorophyllitself.
  4. The activities for the PMS- and FMN-photophosphorylations,theHILL reaction and photosynthetic CO2-fixation were recognizedalready in the algal cells at an early stage of greening inthe light, in which the "discs" were developed but no completelamellar structure was observed. Further processes of increaseof these photosynthetic and related activities—as measuredat a high and a lower light intensities—were studied inrelation to the chlorophyll formation under continuous illuminationand under light-dark conditions. It was found that the PMS-photophosphorylationactivity was developed always in parallel with the chlorophyllformation under these different light conditions. Developmentof the activities for the other photic reactions, however, lagged,to different extents, behind the formation of chlorophyll inthe later phase of greening of algal cells under these conditions.
  5. Based on these results the modes of formation of the componentsinvolved in these photic reactions were surmised.
(Received September 15, 1965; )  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号