首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   47篇
  2023年   1篇
  2021年   1篇
  2019年   3篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   11篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   5篇
  1974年   1篇
  1972年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
1.
2.
The intracellular linker between domains III and IV of the voltage-gated Na channel mediates fast inactivation. Targeted alteration of one or more of a triplet of hydrophobic amino acids within this linker region results in a marked slowing in the decay of ionic current. The mechanism of this defective inactivation was explored in rat skeletal muscle sodium channels (mu 1) containing the F1304Q mutation in Xenopus laevis oocytes with and without coexpression of the rat brain beta 1 subunit. Cell-attached single-channel patch-clamp recordings revealed that the mu 1-F1304Q channel reopens multiple times with open times that are prolonged compared with those of the wild-type channel. Coexpression of the beta 1 subunit stabilized a dominant nonbursting gating mode and accelerated the activation kinetics of mu 1-F1304Q but did not modify mean open time or fast-inactivation kinetics. A Markov gating model incorporating separate fast- and slow-inactivation particles reproduced the results by assuming that the F1304Q mutation specifically influences transitions to and from fast-inactivated states. These effects are independent of interactions of the mutant channel with the beta 1 subunit and do not result from a change in modal gating behavior. These results indicate that F1304Q mutant channels can still enter the inactivated state but do so reversibly and with altered kinetics.  相似文献   
3.
Polygalacturonase-inhibiting protein (PGIP) is a cell wall-associated protein that specifically binds to and inhibits the activity of fungal endopolygalacturonases. The Phaseolus vulgaris gene encoding PGIP has been cloned and characterized. Using a fragment of the cloned pgip gene as a probe in Northern blot experiments, it is demonstrated that the pgip mRNA accumulates in suspension-cultured bean cells following addition of elicitor-active oligogalacturonides or fungal glucan to the medium. Rabbit polyclonal antibodies specific for PGIP were generated against a synthetic peptide designed from the N-terminal region of PGIP; the antigenicity of the peptide was enhanced by coupling to KLH. Using the antibodies and the cloned pgip gene fragment as probes in Western and Northern blot experiments, respectively, it is shown that the levels of PGIP and its mRNA are increased in P. vulgaris hypocotyls in response to wounding or treatment with salicylic acid. Using gold-labeled goat-anti-rabbit secondary antibodies in EM studies, it has also been demonstrated that, in bean hypocotyls infected with Colletotrichum lindemuthianum, the level of PGIP preferentially increases in those cells immediately surrounding the infection site. The data support the hypothesis that synthesis of PGIP constitutes an active defense mechanism of plants that is elicited by signal molecules known to induce plant defense genes.  相似文献   
4.
5.
The m7(G(5')pppN-pyrophosphatase activity previously detected in HeLa cells has been further characterized. Results from DEAE-cellulose column chromatography and polyacrylamide gel electrophoresis under nondenaturing conditions revealed only one enzyme activity in HeLa cell extracts which was capable of selectively hydrolyzing m7G(5')pppN to yield m7pG + ppN (where N = 2'-O-methylated or unmethylated ribonucleosides or oligonucleotides of up to 8 to 10 nucleosides in length). The majority (approximately 95%) of this activity was found in the cytoplasmic extract but appeared not to be associated with the lysosomal fraction. m7G(5')pppG was hydrolyzed by the partially purified enzyme in the absence of divalent cations at a pH optimum of 7.5 and a temperature optimum of 45 degrees, with a Michaelis constant (Km) of 1.7 micronM. Sedimentation analysis and gel filtration showed the molecular weight of the enzyme as approximately 81,000. Inhibition studies testing the effect of a number of prospective substrates on the rate of m7G(5')pppG hydrolysis have confirmed the importance of the methyl moiety at the N7 position of guanosine for enzyme-substrate interaction. Furthermore, the trimethylated guanosine-containing 5'-terminal structure derived from U-2 RNA was found not to serve as substrate, and 7-methylinosine, unlike 7-methylguanosine, was not an effective inhibitor of m7G(5')pppG hydrolysis. Thus, the 2-amino group of the 7-methylguanosine portion of m7G(5')pppN is also important for substrate interaction with this specific pyrophosphatase.  相似文献   
6.
A purification scheme has been developed for the m7G(5')pppN-pyrophosphatase from human placenta. The 1400-fold purified placental enzyme exhibited physical and enzymatic properties similar to those previously reported for a crude preparation of the human m7G(5')pppN-pyrophosphatase obtained from HeLa cells. Polyacrylamide gel analysis of enzyme fractions at different stages of purification revealed a Mr = 40,000 polypeptide that increased in relative concentration as the specific activity of the enzyme fractions increased. Copurification of this polypeptide with m7G(5')pppN-pyrophosphatase activity suggests the possibility that the 81,000-dalton native enzyme is a dimer composed of subunits of identical molecular weight. The highly purified placental enzyme, like the crude HeLa enzyme, failed to hydrolyze the cap moiety of intact mRNA even under conditions known to reduce mRNA secondary structure. Moreover, when a series of capped oligonucleotides that differed progressively in chain length by a factor of one nucleotide was tested as substrate, the rate of enzyme-catalyzed cap hydrolysis decreased as the chain length increased. The purified placental enzyme failed to release m7pG from oligonucleotides containing the cap and 3 or more additional nucleotides. These results are discussed in terms of the probable biological function of the m7G(5')pppN-pyrophosphatase.  相似文献   
7.
8.
9.
Singlet oxygen (1O2) is the main agent of photooxidative stress and is generated by photosensitizers as (bacterio)chlorophylls. It leads to the damage of cellular macromolecules and therefore photosynthetic organisms have to mount an adaptive response to 1O2 formation. A major player of the photooxidative stress response in Rhodobacter sphaeroides is the alternative sigma factor RpoE, which is inactivated under non-stress conditions by its cognate anti-sigma factor ChrR. By using random mutagenesis we identified RSP_1090 to be required for full activation of the RpoE response under 1O2 stress, but not under organic peroxide stress. In this study we show that both RSP_1090 and RSP_1091 are required for full resistance towards 1O2. Moreover, we revealed that the DegS and RseP homologs RSP_3242 and RSP_2710 contribute to 1O2 resistance and promote ChrR proteolysis. The RpoE signaling pathway in R. sphaeroides is therefore highly similar to that of Escherichia coli, although very different anti-sigma factors control RpoE activity. Based on the acquired results, the current model for RpoE activation in response to 1O2 exposure in R. sphaeroides was extended.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号