首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
2.
Plant and Soil - Success in agronomic biofortification of maize and wheat is highly variable. This study aimed to elucidate the differences in uptake and translocation of foliar-applied zinc (Zn)...  相似文献   
3.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
4.
The International Journal of Life Cycle Assessment - Palm oil is considered as the primary source of income for many farmers in Southeast Asia and become a very important agricultural commodity for...  相似文献   
5.
Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex. Received: 14 February 1997 / Revision received: 16 August 1997 / Accepted: 20 July 1997  相似文献   
6.
The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.  相似文献   
7.
Reduced plasma retinol concentrations occur in human malaria but the benefits of supplementation remain uncertain. We assessed the in vivo efficacy of retinol administration, and its effect on lipid peroxidation, in a Plasmodium berghei murine model. Animals received vehicle (n=17) or retinol (i) before P. berghei inoculation (four doses), (ii) at parasitaemia 10-15% (three to four doses) or (iii) before and after inoculation (six to seven doses; n=15 in each group), with euthanasia on day 8 post-inoculation or when the parasitaemia exceeded 50%. Multiple-dose pre-inoculation retinol reduced endpoint parasitaemia by 24% (P=0.001 versus controls). A reduction of 18% (P=0.042) was observed when retinol was given to parasitaemic animals. Retinol was ineffective when given both before and after infection (11% reduction; P=0.47). Although retinol supplementation did not change plasma retinol concentrations, liver retinol content increased and correlated inversely with endpoint parasitaemia (r=-0.45, P=0.001). Malaria infection augmented concentrations of the free radical lipid peroxidation end-product F(2)-isoprostanes in plasma, erythrocytes and liver by 1.8-, 2.8- and 4.9-fold, respectively, but retinol supplementation had no effect on these increases. Consistent with some human malaria studies, prophylactic retinol reduces P. berghei parasitaemia. This effect relates to augmentation of tissue retinol stores rather than to retinol-associated changes in oxidant status.  相似文献   
8.
The prevalence of self-medication (SM) has increased in health professionals due to awareness of disease and symptoms. Incorrect use of medication caused harmful effects. To assess the knowledge, attitude and practice of health professionals, this survey was conducted. A cross-sectional study was carried out among health professionals of different specialities. Knowledge, attitude and practice-based questions were asked through an electronically distributed questionnaire. Data were statistically tested using the Chi-square test with SPSS. Most of the health professionals were aware with the term of self-medication; however the knowledge about related questions was not satisfactory. Almost half of the participants practiced self-medication. The prevalence of self-medication among participants was high. They need to be trained and educate about the incorrect use of self-medication.  相似文献   
9.
During intra-erythrocytic maturation, malaria parasites catabolize up to 80% of cellular haemoglobin. Haem is liberated inside the parasite and converted to haemozoin, preventing haem iron from participating in cell-damaging reactions. Several experimental techniques exploit the relatively large paramagnetic susceptibility of malaria-infected cells as a means of sorting cells or investigating haemoglobin degradation, but the source of the dramatic increase in cellular magnetic susceptibility during parasite growth has not been unequivocally determined. Plasmodium falciparum cultures were enriched using high-gradient magnetic fractionation columns and the magnetic susceptibility of cell contents was directly measured. The forms of haem iron in the erythrocytes were quantified spectroscopically. In the 3D7 laboratory strain, the parasites converted approximately 60% of host cell haemoglobin to haemozoin and this product was the primary source of the increase in cell magnetic susceptibility. Haemozoin iron was found to have a magnetic susceptibility of (11.0 ± 0.9) × 10? 3 mL mol? 1. The calculated volumetric magnetic susceptibility (SI units) of the magnetically enriched cells was (1.88 ± 0.60) × 10? 6 relative to water while that of uninfected cells was not significantly different from water. Magnetic enrichment of parasitised cells can therefore be considered dependent primarily on the magnetic susceptibility of the parasitised cells.  相似文献   
10.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号