首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   8篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1957年   2篇
  1956年   2篇
排序方式: 共有81条查询结果,搜索用时 375 毫秒
1.
Using as a starting material either a detergent extract or a protein fraction eluted from membranes with ethylene glycol bis (beta-aminoethyl ether)-N,N'-tetraacetic acid, we have isolated from human placental membranes a major substrate for the epidermal growth factor (urogastrone) receptor kinase (EGF kinase). The substrate was isolated both in an intact form, having a molecular mass of approximately 38-kDa (p38), and in a 35-kDa form (p35) representing a proteolytic cleavage product of p38. Both p38 and p35 cross-reacted with antibodies directed against bovine retinal transducin, but did not cross-react with antibodies directed against the 35-kDa beta subunit of human placental G-protein. Antisera directed against the placental EGF kinase substrate failed to react with either bovine or human placental src kinase substrate, p36. Conversely, antisera directed against p36 reacted only poorly with placental p38 or p35. Although p38 had a blocked amino terminus that precluded sequence analysis, p35 yielded an N-terminal sequence that was identical with residues 13-36 of human lipocortin. Our data clearly distinguish p38 from the previously described intestinal calcium binding protein calpactin I or p36 that is also a tyrosine kinase substrate, and our work points to a close relationship (if not identity) between p35 and a 35-kDa EGF receptor kinase substrate previously characterized in A431 cells. We conclude that p38 and p35, which very likely represent human placental lipocortin, may share only limited epitope homology with transducin alpha subunit; however, the possibility that p38, along with intestinal p36 and with a family of related calcium binding proteins, may, like transducin, play a role in receptor-mediated transmembrane signaling is discussed.  相似文献   
2.
Membrane vesicles shed from intact A-431 epidermoid carcinoma cells and harvested in the presence of Ca2+ contained epidermal-growth-factor (EGF) receptor/kinase substrates of apparent molecular masses 185, 85, 70, 55, 38 and 27 kDa. The 38 kDa substrate (p38) was recognized by an antibody that had been raised against the human placental EGF receptor/kinase substrate calpactin II (lipocortin I). The A-431 and placental substrates, isolated by immunoprecipitation after phosphorylation in situ, yielded identical phosphopeptide maps upon limited proteolytic digestion with each of five different enzymes. The A-431-cell vesicular p38 is therefore calpactin II. EGF treatment of the intact A-431 cells before inducing vesiculation was not necessary for the substrate to be present within the vesicles. Our data thus indicate that receptor internalization is not a prerequisite for receptor-mediated phosphorylation of calpactin II. The ability of the protein to function as a substrate for the receptor/kinase depended upon the continued presence of Ca2+ during the vesicle-isolation procedure. EGF-stimulated phosphorylation of calpactin II was much less pronounced in vesicles prepared from A-431 cells in the absence of Ca2+, although comparable amounts of the protein were detectable by immunoblotting. Calpactin II therefore appears to be sequestered in a Ca2+-modulated manner within shed vesicles, along with at least four other major targets for the EGF receptor/kinase. The vesicle preparation may be a useful model system in which to study the phosphorylation and function of potentially important membrane-associated substrates for the receptor.  相似文献   
3.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   
4.
Incubation of 1321N1 human astrocytoma cells with 1 microM isoproterenol rapidly results in the conversion of a portion of the beta-adrenergic receptors to a membrane form that can be separated from markers for the plasma membrane by sucrose density gradient or differential centrifugation. This "light peak" form of the receptor reaches a maximal level within 10 min of incubation of cells with catecholamine. Two types of experiments suggest that the early phase of catecholamine-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase can be separated into at least two reactions. First, the agonist-induced loss of catecholamine-stimulated adenylate cyclase activity precedes the appearance of beta-adrenergic receptors in the light peak fraction by 1-2 min. Second, pretreatment of cells with concanavalin A prior to induction of desensitization blocks the formation of the light peak form of beta-adrenergic receptors without blocking the "uncoupling" reaction as measured by catecholamine-stimulated adenylate cyclase activity. Specificity for the reaction that converts beta-adrenergic receptors to the light peak form is indicated by the lack of a catecholamine-induced alteration in the sucrose density gradient distribution of muscarinic cholinergic receptors, adenylate cyclase or the guanine nucleotide-binding proteins, Ns and Ni. The light peak of beta-adrenergic receptors migrates at a density similar to that of at least a portion of the activity of galactosyltransferase, a marker for Golgi. Enzyme marker activities for lysosomes and endoplasmic reticulum are not associated with this population of beta-adrenergic receptors. Taken together, these and other data suggest that incubation of 1321N1 cells with isoproterenol results in a rapid uncoupling of beta-adrenergic receptors from adenylate cyclase which is followed by a change in the membrane form of the receptor. This latter step most likely represents internalization of receptors into a vesicular form which may then serve as the precursor state from which receptors are eventually lost from the cell.  相似文献   
5.
Turkey erythrocyte membranes possess a phospholipase C that is markedly activated by P2Y-purinergic receptor agonists and guanine nucleotides. Reconstitution of [3H]inositol-labeled turkey erythrocyte membranes with guanine nucleotide regulatory protein (G-protein) beta gamma subunits resulted in inhibition of both AlF-4-stimulated adenylate cyclase and AlF-4-stimulated phospholipase C activities. The apparent potency (K0.5 approximately 1 microgram or 20 pmol of beta gamma/mg of membrane protein) of beta gamma subunits for inhibition of each enzyme activity was similar and occurred with beta gamma purified by different methodologies from turkey erythrocyte, bovine brain, or human placenta membranes. In contrast to the effect on AlF-4-stimulated activity, the stimulatory effect on phospholipase C of the P2Y-purinergic receptor agonist 2-methylthioadenosine 5'-triphosphate in the presence of guanine nucleotides was potentiated by 50-100% in a concentration-dependent manner by reconstitution of beta gamma subunits. beta gamma subunits did not affect the K0.5 value of 2-methylthioadenosine 5'-triphosphate for the stimulation of phospholipase C activity. These results indicate that beta gamma subunits influence phospholipase C activity in a concentration range similar to that necessary for regulation of adenylate cyclase activity and suggest the involvement of a G-protein possessing an alpha beta gamma heterotrimeric structure in coupling hormone receptors to phospholipase C.  相似文献   
6.
7.
The 23.5-kDa Sec4 protein is required for vesicular transport between the Golgi apparatus and the plasma membrane in Saccharomyces cerevisiae. In order to analyze its biochemical properties, we have purified the soluble pool of the wild-type protein from an overproducing yeast strain. At 30 degrees C, Sec4p bound [35S] guanosine 5'-O-(thiotriphosphate) (GTP gamma S) with a rate of 0.18 min-1 in a reaction requiring micromolar concentration of free magnesium ions. The protein had high affinity for guanine nucleotides with Kd values for GTP gamma S and GTP of 3.7 nM and 3.5 nM, respectively, and that for GDP of 77 nM. The dissociation of [3H] GDP from Sec4p occurred with a rate of 0.21 min-1 suggesting that the association of GTP gamma S was the result of exchange for prebound GDP. The release of GTP from Sec4p was slow and correlated with a low inherent GTPase activity of 0.0012 min-1. By analogy with other classes of GTP binding proteins, both the nucleotide exchange and hydrolysis activities of Sec4p may be modulated in vivo to facilitate its role in the regulation of intercompartmental membrane traffic.  相似文献   
8.
The molecular mechanisms underlying the exit from the endoplasmic reticulum (ER) for cell surface trafficking of the human calcium receptor (hCaR) remain poorly understood. We investigated the role of the Sar1 small GTP-binding protein in cell surface transport of the hCaR. Disruptions of endogenous Sar1 function with the constitutively active Sar1H79G mutant or depletion using small interfering RNA, attenuates cell surface expression of the hCaR. Mutation of several putative di-acidic ER export motifs in the carboxyl-tail of the receptor revealed no apparent defect in cell surface expression. Truncated mutants lacking most of the carboxyl-terminal sequences or all intracellular domains also showed no impairment in cell surface expression at steady state. A truncated receptor containing only the large amino-terminal extracellular ligand-binding domain (ECD) is secreted into the culture medium and Sar1H79G inhibits this secretion. ECD receptor variants with the cysteines essential for intermolecular disulfide-linked dimerization mutated to serine or four of the asparagine sites for N-glycosylation mutated to alanine also disrupt secretion, indicating proper ECD conformation is critical for forward transport of this receptor.  相似文献   
9.

Ambient temperatures are major factors regulating the growth rates, yields, and geographical distribution of crop species. The cultivation of sesame (Sesamum indicum L.) is expanding with the rising demand in regions where it is not traditionally grown, and sub-optimal yields due to extremely low or high temperatures could occur. Currently literature lacks information on the temperature responses of sesame growth. An experiment was conducted to quantify the effects of different temperatures on vegetative growth and reproductive development of sesame, and to estimate its cardinal temperature limits (Topt; Tmin; Tmax). Plants were subjected to six different day/night temperature treatments of 40/32, 36/28, 32/24, 28/20, and 20/12 °C using walk-in growth chambers. Vegetative growth of sesame was sensitive to low temperatures (<?15 °C), but tolerant of high temperatures. The cardinal temperature limits of 15.7 °C (Tmin), 27.3 °C (Topt), and 44.6 °C (Tmax) were observed for rate of biomass accumulation. Sesame reached the flowering stage under moderate to high temperature conditions; however, reproductive yields progressively declined above 25 °C, and no seed yields were obtained beyond 33 °C. The estimated temperature limits could be employed to develop crop models for simulating management and adaptation strategies of sesame under current and future climate scenarios, and adaptation to regions where the crop is not currently grown. Future research should focus on understanding factors controlling the temperature tolerance of reproductive development in sesame, to provide a broader geographical adaptation.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号