首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1818篇
  免费   100篇
  2023年   2篇
  2021年   16篇
  2020年   12篇
  2019年   28篇
  2018年   18篇
  2017年   25篇
  2016年   33篇
  2015年   63篇
  2014年   83篇
  2013年   111篇
  2012年   115篇
  2011年   119篇
  2010年   81篇
  2009年   68篇
  2008年   99篇
  2007年   103篇
  2006年   88篇
  2005年   119篇
  2004年   117篇
  2003年   94篇
  2002年   87篇
  2001年   26篇
  2000年   33篇
  1999年   41篇
  1998年   18篇
  1997年   31篇
  1996年   20篇
  1995年   18篇
  1994年   21篇
  1993年   20篇
  1992年   21篇
  1991年   25篇
  1990年   20篇
  1989年   17篇
  1988年   17篇
  1987年   12篇
  1986年   21篇
  1985年   13篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   9篇
  1976年   3篇
  1975年   7篇
  1973年   6篇
  1970年   2篇
  1961年   1篇
排序方式: 共有1918条查询结果,搜索用时 163 毫秒
1.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
2.
We previously investigated the biochemical characteristics of microtubule-associated proteins (MAPs) of the adrenal medulla and adrenal cortex and found that they contain a new kind of MAP with a molecular weight of 190,000 (190 kD MAP) as a major species (Kotani, S., H. Murofushi, S. Maekawa, C. Sato, and H. Sakai. Eur. J. Biochem. 156, 23-29, 1986). We now have used an affinity purified anti-(190 kD MAP) antibody and show by indirect immunofluorescent microscopy the association of this MAP with microtubules in situ in TIG-3 cells (human embryonic lung fibroblasts). The 190 kD MAP was present along the interphase and mitotic microtubules, and there was no marked difference between the staining pattern with anti-tubulin and that with anti-(190 kD MAP) antibodies, evidence that the localization of 190 kD MAP is not restricted to the subset of microtubules. We also isolated MAPs from TIG-3 cells and identified their 190 kD MAP as a major heat-stable component. Several other unidentified polypeptides were recovered in the MAP fraction specifically.  相似文献   
3.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
4.
N-Chlorosulfonyl dicyclohexylamine (CSD) was synthesized as a potent inhibitor of spermidine synthase and analyzed for antiproliferative effects on leukemic cells. The compound specifically inhibited spermidine synthase in a competitive mode with the substrate putrescine (Ki, 1.8 X 10(-7) M). When human leukemia Molt4B cells were cultured in the presence of the inhibitor, the intracellular level of spermidine and the rate of cell proliferation were markedly depressed. In these polyamine depleted and growth retarded cells the synthesis of protein, but not of DNA or RNA, was found to be significantly diminished.  相似文献   
5.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
6.
Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA‐treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA‐treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA‐induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.  相似文献   
7.
8.
9.
The first evidence for female‐biased migration in a partially migratory stream‐dwelling salmonid the Dolly Varden Salvelinus malma , a phenomenon well known in sea‐run and lake‐run populations, is presented. Dolly Varden in the Shiisorapuchi River in central Hokkaido, Japan, used both tributaries, of which there are many, and the main stem, but spawned only in tributaries. The size structures of Dolly Varden (≥age 1 + years) in tributaries were unimodal (<100 mm fork length, L F) during non‐spawning seasons but changed to bimodal during spawning seasons (lower mode <110 mm, upper mode >120 mm L F). Mature individuals were observed in both modal groups. From the trapping and census data, the small group appeared to be tributary resident and the large group main stem migrant. Males were common in both resident and migrant components. Most females, however, migrated to the main stem to mature, indicating female‐biased migration.  相似文献   
10.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号