首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
The hormone melatonin is currently proposed by some investigators to be an efficient means for decreasing the impairing effects of jet lag. Eight healthy male subjects, aged 20 to 32, underwent a 9-hr advance shift in the isolation facility of our institute during two periods each of 15 days' duration. In a double-blind, crossover design, subjects took either melatonin or placebo at 1800 hr local time for 3 days before the time shift and at 1400 hr for 4 days afterwards. The time shift was simulated on days 7 and 8 by shortening the sleep period by 6 hr and the following wake period by 3 hr. Body temperature was recorded every 90 min, and urine was collected at 3-hr intervals all day and night. Melatonin treatment enhanced the resynchronization speed of some, but not all, hormone and electrolyte excretion rates for several days after the time shift. The adaptation speed of the temperature rhythm significantly increased during one postshift day. In addition, the circadian temperature rhythm had a significantly higher amplitude under melatonin treatment than under placebo after the time displacement. For the placebo group, the rhythm of 6-hydroxymelatoninsulfate excretion exhibited an advance shift in five subjects, whereas the other three showed a delay shift, and adjustment did not achieve more than one-half of the expected value within 8 days. A significantly different adjustment could be observed in the melatonin-treated group: Seven subjects underwent an advance shift of the expected 9 hr within an average of 8 days. The results suggest that melatonin treatment can accelerate resynchronization of the melatonin excretion rhythm after eastward time zone transitions. The improvement is not, however, sufficiently great that we can recommend melatonin for the alleviation of jet lag.  相似文献   
2.
In vertebrates, the synthesis of prostaglandin hormones is catalyzed by cyclooxygenase (COX)-1, a constitutively expressed enzyme with physiological functions, and COX-2, induced in inflammation and cancer. Prostaglandins have been detected in high concentrations in certain corals, and previous evidence suggested their biosynthesis through a lipoxygenase-allene oxide pathway. Here we describe the discovery of an ancestor of cyclooxygenases that is responsible for prostaglandin biosynthesis in coral. Using a homology-based polymerase chain reaction cloning strategy, the cDNA encoding a polypeptide with approximately 50% amino acid identity to both mammalian COX-1 and COX-2 was cloned and sequenced from the Arctic soft coral Gersemia fruticosa. Nearly all the amino acids essential for substrate binding and catalysis as determined in the mammalian enzymes are represented in coral COX: the arachidonate-binding Arg(120) and Tyr(355) are present, as are the heme-coordinating His(207) and His(388); the catalytic Tyr(385); and the target of aspirin attack, Ser(530). A key amino acid that determines the sensitivity to selective COX-2 inhibitors (Ile(523) in COX-1 and Val(523) in COX-2) is present in coral COX as isoleucine. The conserved Glu(524), implicated in the binding of certain COX inhibitors, is represented as alanine. Expression of the G. fruticosa cDNA afforded a functional cyclooxygenase that converted exogenous arachidonic acid to prostaglandins. The biosynthesis was inhibited by indomethacin, whereas the selective COX-2 inhibitor nimesulide was ineffective. We conclude that the cyclooxygenase occurs widely in the animal kingdom and that vertebrate COX-1 and COX-2 are evolutionary derivatives of the invertebrate precursor.  相似文献   
3.
We have previously shown that Vipera berus berus venom contains several factor X activating enzymes. In the present study we have investigated one of them. The enzyme was separated from venom by gel filtration on Sephadex G-100 superfine and chromatography on agarose HPS-7 and phenyl-agarose. The enzyme is a glycosylated metalloproteinase containing hexoses, hexosamines and neuraminic acid. The purified factor X activating enzyme consists of two equal chains (59 kDa). The specificity studies have shown that enzyme is nonspecific factor X activating proteinase hydrolysing also proteins such as azocasein, gelatin and fibrinogen. The enzyme hydrolyses oxidized insulin B-chain at the positions Ala14–Leu15 and Tyr16–Leu17 but it is inactive on fibrin, plasminogen and prothrombin. We used 8–10 amino acid residues containing peptides, which reproduce the sequence around the cleavage sites in factor X, factor IX and fibrinogen, as potential substrates for enzyme. Cleavage products of peptide hydrolysis were determined by MALDI-TOF MS. The peptide Asn–Asn–Leu–Thr–Arg–Ile–Val–Gly–Gly—factor X fragment was cleaved by enzyme at positions Leu3–Thr4 and Arg5–Ile6. The fibrinogen peptide fragment Glu–Tyr–His–Thr–Glu–Lys–Leu–Val–Thr–Ser was hydrolysed at position Lys6–Leu7.  相似文献   
4.
G-protein-coupled receptor kinases (GRK) are known to phosphorylate agonist-occupied G-protein-coupled receptors. We expressed and functionally characterized mouse GRK6 proteins encoded by four distinct mRNAs generated by alternative RNA splicing from a single gene, mGRK6-A to mGRK6-D. Three isoforms, mGRK6-A to mGRK6-C differ in their C-terminal-most portion, which is known to mediate membrane and/or receptor interaction and regulate the activity of GRK4-like kinases. One isoform, mGRK6-D, is identical to the other mGRK6 variants in the N-terminal region, but carries an incomplete catalytical domain. Mouse GRK6-D was catalytically inactive and specifically present in the nucleus of transfected cells. Recombinant mouse GRK6-A to mGRK6-C were found to be membrane-associated in cell-free systems and in transfected COS-7 cells, suggesting that the very C-terminus of GRK6-A, lacking in GRK6-B and mGRK6-C and carrying consensus sites for palmitoylation, is not required for membrane interaction. Interestingly, the shortest catalytically active variant, mGRK6-C, was conspicuously more active in phosphorylating light-activated rhodopsin than mGRK6-A and mGRK6-B, implying that the C-terminus of the latter two variants may fulfil an autoinhibitory function. Mutation and removal of C-terminal-most region of mGRK6-A by site-directed mutagenesis revealed that this region contains three autoregulatory elements: two discontinuous inhibitory elements consisting of a single residue, D560, and the sequence between residues S566 and L576, and an intervening stimulatory element. The results suggest that mGRK6-C may be considered a basic, prototypic representative of the GRK4-like kinases, which is capable of interacting with both plasma membrane and its receptor substrate, but is resistant to further regulatory modification conferred to the prototype via C-terminal extension.  相似文献   
5.
The conversion of fatty acid hydroperoxides to allene epoxides is catalysed by a cytochrome P450 in plants. In contrast, in the coral Plexaura homomalla, a catalase-related hemoprotein fused to the lipoxygenase (LOX) was found to function as an allene oxide synthase. This work reports the homology-based RT-PCR cloning and functional expression of a Gersemia fruticosa analogue of the allene oxide synthase-lipoxygenase (AOS-LOX) fusion protein. The G. fruticosa mRNA codes for a protein with 84% sequence identity to the P. homomalla AOS-LOX. Our data indicate that the AOS-LOX fusion protein pathway is used by another coral and P. homomalla represents no exception.  相似文献   
6.
It has been known for 30 years that the gorgonian coral Plexaura homomalla contains either 15S- or 15R-configuration prostaglandins (PGs), depending on its location in the Caribbean. Recently we showed that the 15R-PGs in the R-variety of P. homomalla are formed by a unique cyclooxygenase (COX) with 15R oxygenation specificity [Valmsen, K., J?rving, I., Boeglin, W.E., Varvas, K., Koljak, R., Pehk, T., Brash, A.R. & Samel, N. (2001) Proc. Natl. Acad. Sci. USA98, 7700]. Here we describe the cloning and characterization of a closely related COX protein (97% amino acid sequence identity) from the S-variety of P. homomalla. Functional expression of the S-variant COX cDNA in Sf9 insect cells followed by incubation with exogenous arachidonic acid resulted in formation of PG products with > 98% 15S-configuration. Mutational analysis was performed on a suggested active site determinant of C-15 oxygenation specificity, position 349 (Val in all S-specific COX, Ile in 15R-COX). The 15S-COX Val349 to Ile mutant formed 35% 15R-PGs, while the reverse mutation in the 15R-COX (Ile349Val) led to formation of 70% 15S-products. This establishes position 349 as an important determinant of the product stereochemistry at C-15. Our characterization of the enzyme variants demonstrates that very minor sequence divergence accounts for the content of epimeric PGs in the two variants of P. homomalla and that the differences do not arise by isomerization of the products.  相似文献   
7.
A novel natural E-prostaglandin was detected by HPLC among the endogenous prostaglandins extracted from ram seminal vesicles. The corresponding precursor - all-cis-eicosa-8, 11, 14, 17-tetraenoic acid was isolated from bovine liver lipids and the preparative biosynthesis with the microsomal fraction of ram seminal vesicles was performed. The isolated product was purified by HPLC and identified by GC-MS as 5,6-dihydro-PGE3. The results of in vitro tests demonstrate that 5,6-dihydro-PGE3 is 14 times less active uterine stimulant than PGE1, at the same time retaining 75% of the anti-aggregatory potency of PGE1. Thus, 5,6-dihydro-PGE3 meets the requirements of a selective antithrombotic agent more than PGE1.  相似文献   
8.
Inhibitors of trypsin and alpha-chymotrypsin with Mr of about 7000 Da and isoelectric points of greater than 10 and 9.9, respectively, were isolated from the venom of the common viper Vipera berus berus, using gel filtration and ion exchange chromatography. The inhibitor I prefers alpha-chymotrypsin (Ki = 4.6 X 10(-10) M) for the formation of an enzymeinhibitor complex at a molar ratio of 1:1. The inhibitor II prefers trypsin (Ki = 6.7 X 10(-11) M), forms an EI-complex at a molar ratio of 1:2, but also inhibits alpha-chymotrypsin (Ki = 1.4 X 10(-9) M) and hog pancreatic kallikrein (Ki = 1.6 X 10(-8) M). The inhibitor II contains no valine or methionine.  相似文献   
9.
Prostaglandins, well-known lipid mediators in vertebrate animals, have also shown to play certain regulatory roles in insects and other arthropods acting on reproduction, immune system and ion transport. However, knowledge of their biosynthetic pathways in arthropods is lacking. In the present study, we report the cloning and expression of cyclooxygenase (COX) from amphipod crustaceans Gammarus spp and Caprella spp. The amphipod COX proteins contain key residues shown to be important for cyclooxygenase and peroxidase activities. Differently from all other known cyclooxygenases the N-terminal signal sequence of amphipod enzymes is not cleaved during protein expression in mammalian cells. The C-terminus of amphipod COX is shorter than that of mammalian isoforms and lacks the KDEL(STEL)-type endoplasmic reticulum retention/retrieval signal. Despite that, amphipod COX proteins are N-glycosylated and locate similarly to the vertebrate COX on the endoplasmic reticulum and nuclear envelope. Both amphipod COX mRNAs encode functional cyclooxygenases that catalyze the transformation of arachidonic acid into prostaglandins. Using bioinformatic analysis we identified a COX-like gene from the human body louse Pediculus humanus corporis genome that encodes a protein with about 30% sequence identity with human COX-1 and COX-2. Although the COX gene is known to be absent from genomes of Drosophila sp., Aedes aegypti, Bombyx mori, and other insects, our studies establish the existence of the COX gene in certain lineages within the insect world.  相似文献   
10.
Prostaglandin H synthases (PGHSs) have been identified in the majority of vertebrate and invertebrate animals, and most recently in the red alga Gracilaria vermiculophylla. Here we report on the cloning, expression and characterization of the algal PGHS, which shares only about 20% of the amino acid sequence identity with its animal counterparts, yet catalyzes the conversion of arachidonic acid into prostaglandin-endoperoxides, PGG2 and PGH2. The algal PGHS lacks structural elements identified in all known animal PGHSs, such as epidermal growth factor-like domain and helix B in the membrane binding domain. The key residues of animal PGHS, like catalytic Tyr-385 and heme liganding His-388 are conserved in the algal enzyme. However, the amino acid residues shown to be important for substrate binding and coordination, and the target residues for nonsteroidal anti-inflammatory drugs (Arg-120, Tyr-355, and Ser-530) are not found at the appropriate positions in the algal sequences. Differently from animal PGHSs the G. vermiculophylla PGHS easily expresses in Escherichia coli as a fully functional enzyme. The recombinant protein was identified as an oligomeric (evidently tetrameric) ferric heme protein. The preferred substrate for the algal PGHS is arachidonic acid with cyclooxygenase reaction rate remarkably higher than values reported for mammalian PGHS isoforms. Similarly to animal PGHS-2, the algal enzyme is capable of metabolizing ester and amide derivatives of arachidonic acid to corresponding prostaglandin products. Algal PGHS is not inhibited by non-steroidal anti-inflammatory drugs. A single copy of intron-free gene encoding for PGHS was identified in the red algae G. vermiculophylla and Coccotylus truncatus genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号