首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   17篇
  2019年   1篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   10篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
1.
Selected pairs of protonated ribosomal proteins were reconstituted into deuterated 50S subunits from Escherichia coli ribosomes. The rRNA of the deuterated ribosomal matrix was derived from cells grown in 76% D2O, the deuterated protein moiety from cells grown in 84% D2O. This procedure warrants that the coherent neutron scattering of deuterated proteins and rRNA is nearly the same and equals that of a D2O solution of approximately 90%. The neutron scattering is recorded in a reconstitution buffer containing approximately 90% D2O. The result is a significant improvement of the coherent signal:noise ratio over traditional methods; due to this dilute solutions can be used, thus preventing unfavorable inter-particle effects. From the diffraction pattern the distance between the mass centers of gravity of the two protonated proteins can be deduced. In this way, 50 distances between proteins within the large subunit have been determined which provide a basis for future models of the large ribosomal subunit describing the spatial distribution of the ribosomal proteins. A model containing seven ribosomal proteins is presented.  相似文献   
2.
V Nowotny  K H Nierhaus 《Biochemistry》1988,27(18):7051-7055
A protein which initiates assembly of ribosomes is defined as a protein which binds to the respective rRNA without cooperativity (i.e., without the help of other proteins) during the onset of assembly and is essential for the formation of active ribosomal subunits. The number of proteins binding without cooperativity was determined by monitoring the reconstitution output of active particles at various inputs of 16S rRNA, in the presence of constant amounts of 30S-derived proteins (TP30): This showed that only two of the proteins of the 30S subunit are assembly-initiator proteins. These two proteins are still present on a LiCl core particle comprising 16S rRNA and 12 proteins (including minor proteins). The 12 proteins were isolated, and a series of reconstitution experiments at various levels of rRNA excess demonstrated that S4 and S7 are the initiator proteins. Pulse-chase experiments performed during the early assembly with 14C- and 3H-labeled TP30 and the determination of the 14C/3H ratio of the individual proteins within the assembled particles revealed a bilobal structure of the 30S assembly: A group of six proteins headed by S4 (namely, S4, S20, S16, S15, S6, and S18) resisted the chasing most efficiently (S4 assembly domain). None of the proteins depending on S7 during assembly were found in this group but rather in a second group with intermediate chasing stability [S7 assembly domain; consisting of S7, S9, (S8), S19, and S3]. A number of proteins could be fully chased during the early assembly and therefore represent "late assembly proteins" (S10, S5, S13, S2, S21, S1). These findings fit well with the 30S assembly map.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
tRNA saturation experiments were performed with ribosomal subunits from the extreme halophilic archaebacterium Halobacterium halobium. In the presence of poly(U) the 30S subunit could bind equally well one AcPhe-tRNAPhe, Phe-tRNAPhe, or deacylated tRNAPhe molecule, respectively. Binding experiments with a mixture of two differently labeled tRNA species revealed that all three kinds of tRNA bound to one and the same binding site on the 30S subunit. Poly(U) dependent binding to the 50S subunit was insignificant for AcPhe-tRNA and Phe-tRNA. In the absence of poly(U) both AcPhe-tRNAPhe and Phe-tRNAPhe showed no significant binding to either subunit, whereas the binding of deacylated tRNAPhe could not be clearly determined. These results are in good agreement with those obtained from ribosomal subunits of the eubacterium Escherichia coli.  相似文献   
4.
The incubation of the 50 S ribosomal subunit of Escherichia coli with 1.5 M LiCl yields 1.5c core particles inactive in the peptidyl-tRNA hydrolysis activity of in vitro termination. The omission of L16 alone from reconstitutions of the proteins into the core results in inactive ribosomes. The single omission of a number of other proteins, in particular L7/L12, L10, L25, L27, and L15, gives ribosomes with intermediate activity. L16 alone is unable to restore significant activity to 1.5c cores, but together L16 and the above "stimulating" proteins produce particles as active as those reconstituted with the full complement of proteins. The ribosomal proteins important for the expression of peptidyl-tRNA hydrolysis and peptidyl transferase activities are very similar. However, ribosomes lacking both L11 and L16, but not L16 alone, surprisingly can catalyze codon- and release factor 2-dependent peptidyl-tRNA hydrolysis. The addition of L16 dramatically increases the activity. L16 is, therefore, important but not essential for the expression of the release factor 2-dependent peptidyl-tRNA hydrolysis.  相似文献   
5.
The E site (exit site for deacyl-tRNA) has been shown to be allosterically linked to the A site (aminoacyl-tRNA binding site), in that occupation of the E site reduces the affinity of the A site, and vice versa, whereas the intervening peptidyl-tRNA binding site (P site) keeps its high affinity. Here the question is analysed of whether or not the low affinity state of the A site caused by an occupied E site is of importance for the ribosomal accuracy of the aminoacyl-tRNA selection. In a poly(U) dependent system with high accuracy in poly(Phe) synthesis, the acceptance of the cognate ternary complex Phe-tRNA--EF-Tu--GTP (which has the correct anticodon with respect to the codon at the A site) was compared with the competing acceptance of ternary complexes with near-cognate Leu-tRNA(Leu) (which has a similar anticodon) or non-cognate Asp-tRNA(Asp) (which has a dissimilar anticodon), by monitoring the formation of AcPhePhe, AcPheLeu or AcPheAsp, respectively. Cognate (but not near-cognate) occupation of the E site reduced synthesis of the 'wrong' dipeptide AcPheLeu only marginally relative to that of the cognate AcPhe2, whereas the formation of AcPheAsp was decreased as much as 14-fold, thereby reducing it to the background level. It follows that the allosteric interplay between E and A sites, i.e. the low affinity of the A site induced by the occupation of the E site, excludes the interference of non-cognate complexes in the decoding process and thus reduces the number of aminoacyl-tRNA species competing for A site binding by an order of magnitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
Summary The peptide antibiotic viomycin at a concentration of 10 M inhibits E. coli ribosomes to the extent of about 70% as measured in the poly(U) system, and to about 85% in a natural mRNA (R17) system. Ribosomes from M. smegmatis show no activity at all at this concentration of the antibiotic. Experiments on the Mg2+ dependent dissociation and association of the ribosomal subunits revealed that viomycin stabilizes the 70S couples and promotes association of ribosomal subunits. This response is related to the drug action as indicated by the observation that viomycin resistant strains are not affected by viomycin with respect to dissociation and 70S couple information. A model for the inhibitory action of the drug is proposed.  相似文献   
7.
Kinetic analyses of tRNA binding to the ribosome and of the translocation reaction showed the following results. 1) The activation energy for the P site binding of AcPhe-tRNA to poly(U)-programmed ribosomes is relatively high (Ea = 72 kJ mol-1; 15 mM Mg2+). If only the P site is occupied with deacylated tRNA(Phe), then the E site can be filled more easily with tRNA(Phe) (no activation energy measurable) than the A site with AcPhe-tRNA (Ea = 47 kJ mol-1; 15 mM Mg2+). 2) A ribosome with blocked P and E sites represents a standard state of the elongation cycle, in contrast to a ribosome with only a filled P site. The two states differ in that AcPhe-tRNA binding to the A site of a ribosome with prefilled P and E sites requires much higher activation energy (87 versus 47 kJ mol-1). The latter reaction simulates the allosteric transition from the post- to the pretranslocational state, whereby the tRNA(Phe) is released from the E site upon occupation of the A site (Rheinberger, H.-J., and Nierhaus, K. H. (1986) J. Biol. Chem. 261, 9133-9139). The reversed transition from the pre- to the posttranslocational state (translocation reaction) requires about the same activation energy (90 kJ mol-1). 3) Both elongation factors EF-Tu and EF-G drastically reduce the respective activation energies. 4) The rate of the A site occupation is slower than the rate of translocation in the presence of the respective elongation factors. The data suggest that the A site occupation rather than, as generally assumed, the translocation reaction is the rate-limiting step of the elongation cycle.  相似文献   
8.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   
9.
Virginiamycin S is an inhibitor of protein synthesis in vivo. In this paper we show by equilibrium dialysis that it binds specifically to the 50-S subunit of Escherichia coli ribosomes, with one binding site per subunit. This binding is not altered by the presence of chloramphenicol, tetracycline or puromycin but is competed for by erythromycin. Using the splitting-reconstitution method, it could be demonstrated that protein L16 is absolutely required for the binding of virginiamycin S to the 50-S subunit.  相似文献   
10.
The effect of buffer conditions on the binding position of tRNA on the Escherichia coli 70 S ribosome have been studied by means of three-dimensional (3D) cryoelectron microscopy. Either deacylated tRNAfMet or fMet-tRNAfMet were bound to the 70 S ribosomes, which were programmed with a 46-nucleotide mRNA having AUG codon in the middle, under two different buffer conditions (conventional buffer: containing Tris and higher Mg2+ concentration [10-15 mM]; and polyamine buffer: containing Hepes, lower Mg2+ concentration [6 mM], and polyamines). Difference maps, obtained by subtracting 3D maps of naked control ribosome in the corresponding buffer from the 3D maps of tRNA.ribosome complexes, reveal the distinct locations of tRNA on the ribosome. The position of deacylated tRNAfMet depends on the buffer condition used, whereas that of fMet-tRNAfMet remains the same in both buffer conditions. The acylated tRNA binds in the classical P site, whereas deacylated tRNA binds mostly in an intermediate P/E position under the conventional buffer condition and mostly in the position corresponding to the classical P site, i. e. in the P/P state, under the polyamine buffer conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号