首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2012年   4篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有37条查询结果,搜索用时 234 毫秒
1.
This present research investigated variations in lipid profiles and important biomarkers of tissue damage in response to graded concentrations of alcohol administration in male Wistar rats. Group A (control) received distilled water while group B, C and D received 30%, 40% and 50% (v/v) alcohol respectively. Five rats each from groups A-D were sacrificed after day(s) 1, 7, 14, 21 and 28 of administration. A significant increase was observed at day 28 for serum cholesterol by 79% (group B), 78% (group C) and 47% (group D) together with serum phospholipid 58% (group B), 50% (group C) and 92% (group D). Serum triacylglycerol increased by 71% (group B), 43% (group C) and 16% (group D) at day 21, while concentration of serum albumin decreased at day 28 by 40.9% (group B), 50.2% (group C), 53.3% (group D) respectively when compared with control (group A). Serum aminotransferases and alkaline phosphatase specific activities, as well as creatinine and uric acid concentration increased in a concentration-dependent manner, following alcohol administration. Though most of these effects induced by alcohol were time- and concentration-dependent, 40% alcohol appear to be more stable, giving results consistent with alcohol-induced damages, with minimal mortality. This study therefore further validated dyslipidemia and imbalance in clinical biomarkers as hallmarks of tissue damage induced by excessive alcohol consumption with an insight on the time- and concentration-response relationship between alcohol consumption and its toxicity.  相似文献   
2.
Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.  相似文献   
3.
Plasma membrane H+‐ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+‐ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+‐ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.  相似文献   
4.
Diabetes mellitus is a significant risk factor for cardiovascular diseases, and low-grade systemic inflammation, mediated by oxidative stress, may play a central role. Caloric restriction (CR) has been reported to be effective in reducing oxidative stress during diabetes and moderating the expression of some markers of inflammation that are up-regulated during aging. Forty male Wistar rats were randomly divided into four groups: nondiabetic feeding ad libitum and under CR, and diabetic feeding ad libitum and under CR. The animals were subjected to 30% CR and ad libitum feeding for 9 weeks before the induction of diabetes by intraperitoneal injection with 35 mg/kg body weight streptozotocin. The inflammatory cytokines [interleukin (IL)-1beta, IL-4 and IL-6] and tumor necrosis factor alpha up-regulated in diabetes were found to be significantly depressed by CR, whereas the antiinflammatory mediators, haptoglobin and IL-10 levels, were increased. These results indicated that CR could prevent diabetic complications through suppression of inflammatory responses.  相似文献   
5.
The effect of chronic phostoxin administration on some tissue ATPases, hematology and tissue histopathology was investigated using a combination of gravimetric, enzymatic, colorimetric and histological procedures in New Zealand White rabbits after 2 weeks administration of 0.8mg phostoxin/kg body weight/day, po. The phostoxin treatment led to significant decreases in Na(+)-K+ ATPase activities in renal, hepatic and cardiac tissues. Similar decreases were obtained in the activities of Ca(2+)-ATPase and Mg(2+)-ATPase in liver. In addition, the phostoxin-toxified rabbits manifested significant decreases in hematocrit, red blood cell count, hemoglobin and platelets. Histological examination of the tissues revealed pronounced degenerative changes in liver, heart and kidney.  相似文献   
6.
The presence in cancer tissue of Ag-specific, activated tumor infiltrating CD8(+) T cells proves that tumors express Ags capable of eliciting immune response. Therefore, in general, tumor escape from immune-mediated clearance is not attributable to immunological ignorance. However, tumor-infiltrating lymphocytes are defective in effector phase function, demonstrating tumor-induced immune suppression that likely underlies tumor escape. Since exocytosis of lytic granules is dependent upon TCR-mediated signal transduction, it is a reasonable contention that tumors may induce defective signal transduction in tumor infiltrating T cells. In this review, we consider the biochemical basis for antitumor T cell dysfunction, focusing on the role of inhibitory signaling receptors in restricting TCR-mediated signaling in tumor-infiltrating lymphocytes.  相似文献   
7.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   
8.
Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.  相似文献   
9.
Objective: Central counter‐regulatory mechanisms, including those related to the orexigenic hormone neuropeptide Y (NPY), may limit the weight loss observed with conventional pharmacological monotherapy. This study evaluated whether blockade of the NPY Y5 receptor (NPY5R) with the selective antagonist MK‐0557 potentiates sibutramine and orlistat weight loss effects. Research Methods and Procedures: Obese patients (497, BMI 30 to 43 kg/m2) were randomized to 1 of 5 treatment arms [placebo, n = 101; sibutramine 10 mg/d, n = 100; MK‐0557 1 mg/d plus sibutramine 10 mg/d, n = 98; orlistat 120 mg TID, n = 99; MK‐0557 1 mg/d plus orlistat 120 mg TID, n = 99] in conjunction with a hypocaloric diet for 24 weeks. The all‐patients‐treated population, imputing missing data using last observation carried forward, was used to assess weight loss from baseline. Results: The study was completed by 71% of patients in placebo, 76% in sibutramine alone, 79% in MK‐0557 + sibutramine, 69% in orlistat alone, and 76% in MK‐0557 + orlistat groups. Least squares (LS) mean difference [95% confidence interval (CI)] in weight change from baseline between MK‐0557 + sibutramine and sibutramine alone was ?0.1 (?1.6, 1.4) kg (p = 0.892) and between MK‐0557 + orlistat and orlistat alone was ?0.9 (?2.4, 0.6) kg (p = 0.250). Sibutramine alone induced a LS mean weight loss of ?5.9 (?6.9, ?4.9) kg vs. ?4.6 (?5.7, ?3.6) kg for orlistat (p = 0.097). There were no serious drug‐related adverse events and MK‐0557 was well tolerated. Discussion: Blockade of the NPY5R with the potent antagonist MK‐0557 did not significantly increase the weight loss efficacy of either orlistat or sibutramine monotherapy.  相似文献   
10.
It is well accepted that oxidative DNA repair capacity, oxidative damage to DNA and oxidative stress play central roles in aging and disease development. However, the correlation between oxidative damage to DNA, markers of oxidant stress and DNA repair capacity is unclear. In addition, there is no universally accepted panel of markers to assess oxidative stress in humans. Our interest is oxidative damage to DNA and its correlation with DNA repair capacity and other markers of oxidative stress. We present preliminary data from a small comet study that attempts to correlate single strand break (SSB) level with single strand break repair capacity (SSB-RC) and markers of oxidant stress and inflammation. In this limited study of four very small age-matched 24-individual groups of male and female whites and African-Americans aged 30-64 years, we found that females have higher single strand break (SSB) levels than males (p=0.013). There was a significant negative correlation between SSB-RC and SSB level (p=0.041). There was a positive correlation between SSBs in African American males with both heme degradation products (p=0.008) and high-sensitivity C-reactive protein (hs-CRP) (p=0.022). We found a significant interaction between hs-CRP and sex in their effect on residual DNA damage (p=0.002). Red blood cell reduced glutathione concentration was positively correlated with the levels of oxidized bases detected by endonuclease III (p=0.047), heme degradation products (p=0.015) and hs-CRP (p=0.020). However, plasma carbonyl levels showed no significant correlation with other markers. The data from the literature and from our very limited study suggest a complex relationship between measures of oxidative stress and frequently used clinical parameters believed to reflect inflammation or oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号