首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
排序方式: 共有10条查询结果,搜索用时 187 毫秒
1
1.
International Journal of Peptide Research and Therapeutics - Acinetobacter baumannii is an important pathogen responsible for nosocomial infections worldwide. Trimeric autotransporters, the...  相似文献   
2.
International Journal of Peptide Research and Therapeutics - Breast cancer (BC) is the most common type of women’s cancer with a prevalence of about 25%, although it is rare in men...  相似文献   
3.
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.  相似文献   
4.
Abstract

Acetylcholinesterase (AChE) enzyme and myeloid differentiation 2 protein (MD2) are two critical proteins involved in Alzheimer’s disease (AD). Since the nature of the active site of AChE and the binding pocket of MD2 are similar, some ligands can inhibit both of them appropriately. Oxidative stress has also been known as an important cause of AD. Designing an effective common inhibitor with antioxidant activity to inhibit AChE and MD2 proteins is the main goal of this work. In this regard, we used tacrine molecule with a high ligand efficiency (LE) and dehydrozingerone (DHZ) with anti-inflammatory, antioxidant and anti-Alzheimer activities. Some modifications on DHZ structure can increase its antioxidant activity. So, tacrine molecule was combined with modified DHZ to present a new multi-target-directed ligand (MTDL). The ability of the designed ligand to inhibit AChE and MD2 proteins was confirmed by molecular docking, molecular dynamics (MD) simulation, and binding-free energy calculations. Therefore, the designed ligand can target two proteins involved in AD. It can also act as a potent antioxidant. In general, three important causative agents of AD are targeted by the designed ligand. Moreover, the inhibition of MD2, as the main source of oxidative stress, significantly reduces the production of free radicals.  相似文献   
5.
Human gonadotropin hormone receptor, a G-protein coupled receptor, is the target of many medications used in fertility disorders. Obtaining more structural information about the receptor could be useful in many studies related to drug design. In this study, the structure of human gonadotropin receptor was subjected to homology modeling studies and molecular dynamic simulation within a DPPC lipid bilayer for 100 ns. Several frames were thereafter extracted from simulation trajectories representing the receptor at different states. In order to find a proper model of the receptor at the antagonist state, all frames were subjected to cross-docking studies of some antagonists with known experimental values (Ki). Frame 194 revealed a reasonable correlation between docking calculated energy scores and experimental activity values (|r|?=?0.91). The obtained correlation was validated by means of SSLR and showed the presence of no chance correlation for the obtained model. Different structural features reported for the receptor, such as two disulfide bridges and ionic lock between GLU90 and LYS 121 were also investigated in the final model.  相似文献   
6.
Streptococcus pneumoniae is a leading cause of some diseases such as pneumonia, sepsis, and meningitis mostly in children less than 5?years of age. Presently, two types of pneumococcal vaccine are available on the market: polysaccharide vaccines (PPV) that are based on capsular polysaccharides of at least 92 different serotypes, and protein-conjugated polysaccharide vaccine (PCV). The PPVs such as PPV23 do not stimulate efficient protective immunity in children under 2?years old, while the PCVs such as PCV7, PCV10, and PCV13 that cover 7, 10, and 13 serotypes, respectively, highly protect newborns, but have some disadvantages such as complications in manufacturing, costly production, and also requires refrigeration and multiple injections. Epitope-based vaccines, including varied mixtures of conserved virulence proteins, are a promising alternative to the existing capsular antigen vaccines. In this study, it has been tried to design an efficient subunit vaccine in order to elicit both CTL and HTL responses. The immunodominant epitopes from highly protective antigens of S. pneumoniae (PspA, CbpA, PiuA, and PhtD) were selected from different databanks, such as IEDB, PROPRED, RANKPEP, and MHCPRED. The PspA and CbpA were chosen as CTL epitope stimulants, and PhtD and PiuA were defined as helper epitopes. Because of low immunogenicity of epitope vaccines, PorB protein as a TLR2 agonist was employed to increase the immunogenicity of the vaccine. All the peptide segments were fused to each other by proper linkers, and the physicochemical, structural, and immunological characteristics of the construct were also evaluated. To achieve a high-quality 3?D structure of the protein, modeling, refinement, and validation of the final construct were done. Docking and molecular dynamics analyses demonstrated an appropriate and stable interaction between the vaccine and TLR2 during the simulation period. The computational studies suggested the designed vaccine as a novel construct, capable to elicit efficient humoral and cellular immunities, which are crucial for protection against S. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
The clinical applications of therapeutic enzymes are often limited due to their immunogenicity. B-cell epitope removal is an effective approach to solve this obstacle. The identification of hot spot epitopic residues is a critical step in the removal of protein B-cell epitope. Hereof, computational approaches are a suitable alternative to costly and labor-intensive experimental approaches. Arginine deiminase, a Mycoplasma arginine-catabolizing enzyme, is in the clinical trial for treating arginine auxotrophic cancers, especially hepatocellular carcinomas and melanomas through depleting plasma arginine and causing cell starvation. In this study, arginine deiminase from Mycoplasma hominis (MhADI) was computationally analyzed for recognizing and locating its immune-reactive regions. The 3D structure of the bioactive form of MhADI was modeled. The B-cell epitope mapping of protein was performed using various servers with different algorithms. Six segments: 31–40, 48–55, 131–140, 196–206, 294–314, and 331–344 were predicted to be the consensus immunogenic regions. The modification of epitopic hot spot residue was performed to reduce immune-reactiveness. The hot spot residue was selected considering a high B-cell epitope score, convexity index, surface accessibility, flexibility, and hydrophilicity. The structure stability of native and mutant proteins was evaluated through molecular dynamics simulation. The E304L mutein was suggested as a lower antigenic and stable enzyme derivative.  相似文献   
8.
9.
10.
Signal peptides (SP) are short peptides located in the N-terminal of proteins, carrying information for protein secretion. They are ubiquitous to all prokaryotes and eukaryotes. SPs have been of special interest in several scientific and industrial fields, including recombinant protein production, disease diagnosis, immunization, and laboratory techniques. Recently, the role of SPs in recombinant protein production has gained too much attention. Herein, several studies have been reviewed to elucidate the precise structure and function of SPs, particularly the optimized ones for recombinant protein production. However, some features of SPs still have remained obscure. In this review, some approaches concerning elucidation and optimization of SPs are discussed, and pragmatic conclusions and suggestions for future studies are also proposed. Moreover, a summary of secretory pathways, evolutionary changes, functions, applications, and different types of SPs is mentioned. At last, current limitations and prospects are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号