首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   7篇
  2011年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
beta-Selenolo[3,2-b]pyrrolyl-L-alanine that mimics tryptophan with the benzene ring of the indole moiety replaced by selenophene, was incorporated into human annexin V and barstar. This was achieved by fermentation and expression in a Trp-auxotrophic Escherichia coli host strain using the selective pressure incorporation method. The seleno- proteins were obtained in yields comparable to those of the wild-type proteins and exhibit full crystallographic isomorphism to the parent proteins, but expectedly show altered absorbance profiles and quenched tryptophan fluorescence. Since the occurrence of tryptophan residues in proteins is rare, incorporation of the electron-rich selenium-containing tryptophan surrogate into proteins represents a useful supplementation and even a promising novel alternative to selenomethionine for solving the phase problem in protein X-ray crystallography.  相似文献   
2.
The expanded genetic code in combination with site-directed mutagenesis was used to probe spectroscopic and structural roles of tryptophan (Trp) residues in Aequorea victoria green fluorescent proteins (avGFPs). Nine different halogen-, chalcogen-, and methyl-containing Trp isosteric analogues and surrogates were incorporated into avGFPs containing indole moieties in, and outside of, the chromophore, by the use of the selective pressure incorporation method. Such isosteric replacements introduced minimal local geometry changes in indole moieties, often to the level of single atomic exchange ('atomic mutation') and do not affect three-dimensional structures of avGFPs but induce changes in spectral properties. Our approach offers a new platform to re-evaluate issues like resonance transfer, mechanisms of chromophore formation and maturation, as well as the importance of local geometry and weak sulphur-aromatic interactions for avGFP spectral properties and structural stability. The library of novel tailor-made avGFP mutants and variants generated in this work has demonstrated not only the potentials of the expanded genetic code to study spectroscopic functions, but also a new approach to generate tailor-made proteins with interesting and useful spectral properties.  相似文献   
3.
Much effort has been dedicated to the design of significantly red shifted variants of the green fluorescent protein (GFP) from Aequoria victora (av). These approaches have been based on classical engineering with the 20 canonical amino acids. We report here an expansion of these efforts by incorporation of an amino substituted variant of tryptophan into the "cyan" GFP mutant, which turned it into a "gold" variant. This variant possesses a red shift in emission unprecedented for any avFP, similar to "red" FPs, but with enhanced stability and a very low aggregation tendency. An increasing number of non-natural amino acids are available for chromophore redesign (by engineering of the genetic code) and enable new general strategies to generate novel classes of tailor-made GFP proteins.  相似文献   
4.
We describe the simple bioconjugation strategy in combination of periodate chemistry and unnatural amino acid incorporation. The residue specific incorporation of 3,4-dihydroxy-l-phenylalanine can alter the properties of protein to conjugate into the polymers. The homogeneously modified protein will yield quinone residues that are covalently conjugated to nucleophilic groups of the amino polysaccharide. This novel approach holds great promise for widespread use to prepare protein conjugates and synthetic biology applications.  相似文献   
5.
Recently, it has become possible to reprogram the protein synthesis machinery such that numerous noncanonical amino acids can be translated into target sequences yielding tailor-made proteins. The canonical amino acid tryptophan (Trp) encoded by a single nucleotide triplet (UGG) is a particularly interesting target for protein engineering and design. Trp-residues can be substituted with a variety of analogs and surrogates generated biosynthetically or by organic chemistry. Among them, nitrogen-containing tryptophan analogs occupy a central position, as they have distinct chemical properties in comparison with aliphatic amines and imines. They resemble purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. These special properties of the analogs can be directly transmitted into related protein structures via in vivo ribosome-mediated translation. Proteins expressed in this way are further endowed with unique properties like new spectral, altered redox and titration features or might serve as useful biomaterials. We present and discuss current works and future developments in protein engineering with nitrogen-containing tryptophan analogs and related compounds as well as their relevance for academic and applicative research.The term noncanonical amino acid refers to an amino acid that does not belong, in contrast to a canonical amino acid, to the genetically encoded, proteinogenic amino acids. The term analog defines a strict isosteric exchange of a canonical/noncanonical amino acid (e.g., tryptophan/azatryptophan), while the term surrogate defines a nonisosteric change (e.g., tryptophan/azulene). Mutant denotes a protein in which the wild-type sequence was changed by site-directed mutagenesis (codon manipulation on the DNA level) within the repertoire of the standard amino acids. Variant denotes a protein in which one or more canonical amino acids derived from a wild-type or a mutant sequence were replaced by a noncanonical one (expanded amino acid repertoire, codon reassignment on the protein translation level).  相似文献   
6.
N-terminal site-specific modification of a protein has many advantages over methods targeting internal positions, but it is not easy to install reactive groups onto a protein in an N-terminal specific manner. We here report a strategy to incorporate amino acid analogues specifically in the N-terminus of a protein in vivo and demonstrate it by preparing green fluorescent protein (GFP) having bio-orthogonally reactive groups at its N-terminus. In the first step, GFP was engineered to be a foldable, internal methionine-free sequence via the semi-rational mutagenesis of five internal methionine residues and the introduction of mutations for GFP folding enhancement. In the second step, the N-terminus of the engineered protein was modified in vivo with bio-orthogonally functional groups by reassigning functional methionine surrogates such as L-homopropargylglycine and L-azidohomoalanine into the first methionine codon of the engineered internal methionine-free GFP. The N-terminal specific incorporation of unnatural amino acids was confirmed by ESI-MS analysis and the incorporation did not affect significantly the specific activity, refolding rate and folding robustness of the protein. The two proteins which have alkyne or azide groups at their N-termini were conjugated each other by bio-orthogonal Cu(I)-catalyzed click chemistry. The strategy used in this study is expected to facilitate bio-conjugation applications of proteins such as N-terminal specific glycosylation, labeling of fluorescent dyes, and immobilization on solid surfaces.  相似文献   
7.
C Minks  R Huber  L Moroder  N Budisa 《Biochemistry》1999,38(33):10649-10659
The single tryptophan residue (Trp187) of human recombinant annexin V, containing 320 residues and 5328 atoms, was replaced with three different isosteric analogues where hydrogen atoms at positions 4, 5, and 6 in the indole ring were exchanged with fluorine. Such single atom exchanges of H --> F represent atomic mutations that result in slightly increased covalent bond lengths and inverted polarities in the residue side-chain structure. These minimal changes in the local geometry do not affect the secondary and tertiary structures of the mutants, which were identical to those of wild-type protein in the crystal form. But the mutants exhibit significant differences in stability, folding cooperativity, biological activity, and fluorescence properties if compared to the wild-type protein. These rather large global effects, resulting from the minimal local changes, have to be attributed either to the relatively strong changes in polar interactions of the indole ring or to differences in the van der Waals radii or to a combination of both facts. The changes in local geometry that are below resolution of protein X-ray crystallographic studies are probably of secondary importance in comparison to the strong electronegativity introduced by the fluorine atom. Correspondingly, these types of mutations provide an interesting approach to study cooperative functions of integrated residues and modulation of particular physicochemical properties, in the present case of electronegativity, in a uniquely structured and hierarchically organized protein molecule.  相似文献   
8.
Azim MK  Budisa N 《Biological chemistry》2008,389(9):1173-1182
Abstract Non-canonical amino acids (N(AA)), as building blocks for peptides and proteins during ribosomal translation, represent a nearly infinite supply of novel functions. The specific selection, activation and tRNA-charging of amino acids by aminoacyl-tRNA synthetases (AARS) in the aminoacylation reaction are essential steps. In most cases, aminoacylation of N(AA) is a good indication that the related amino acid will participate in ribosomal translation as well. However, testing the translational capacity of amino acid analogs has technical limitations. Therefore, a rapid and reliable in silico test for N(AA) recognition by AARS would be advantageous in experimental design. We chose tryptophanyl-tRNA synthetase from Escherichia coli as a model system for docking studies with various tryptophan analogs using the FlexX-Pharm strategy. We were able to calculate relative binding energies for Trp analogs in TrpRS that correlate well with their translational activities in E. coli. In particular, FlexX-Pharm predicted the binding sites of fluoro-, amino-, hydroxyl- and aza-containing Trp analogs within 1.5 A of Trp in the homology model of E. coli TrpRS. Therefore, the use of ligand docking prior to N(AA) incorporation experiments might provide a straightforward means for determining N(AA) that can be efficiently incorporated into a protein.  相似文献   
9.
Recently, non-canonical amino acids (NCAA) incorporation was developed to enhance the functional properties of proteins. Incorporation of NCAA containing chlorine atom is conceptually an attractive approach to prepare pharmacologically active substances, which is a difficult task since chlorine is bulky atom. In this study, we evaluated the efficiency and extent of in vivo incorporation of tyrosine analogue 3-chlorotyrosine [(3-Cl)Tyr] into the recombinant proteins GFP and GFPHS (highly stable GFP). The incorporation of (3-Cl)Tyr into GFP leads to dramatic reduction in the expression level of protein. On the other hand, the incorporation of (3-Cl)Tyr into GFPHS was expressed well as a soluble form. In addition we used bioinformatics tools for the analysis to explore the possible constraints in micro-environment of each natural amino acid residue to be replaced with chlorine atom accommodation into GFPHS. In conclusion, our approaches are reliable and straightforward way to enhance the translation of chlorinated amino acids into proteins.  相似文献   
10.
The argyrins are a family of non-ribosomal peptides that exhibits different biological activities through only small structural changes. Ideally, a biologically active molecule can be tracked and observed in a variety of biological and clinical settings in a non-invasive manner. As a step towards this goal, we report here a chemical synthesis of unnatural deep blue amino acid β-(1-azulenyl)-l alanine with different fluorescence and photophysical properties, which allows a spectral separation from the native tryptophan signal. This might be especially useful for cell localization studies and visualizing the targeted proteins. In particular, the synthesis of β-(1-azulenyl)-l alanine was achieved through a Negishi coupling which proved to be a powerful tool for the synthesis of unnatural tryptophan analogs. Upon β-(1-azulenyl)-l alanine incorporation into argyrin C, deep blue octapeptide variant was spectrally and structurally characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号