首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   25篇
  国内免费   1篇
  2023年   6篇
  2022年   12篇
  2021年   33篇
  2020年   20篇
  2019年   37篇
  2018年   24篇
  2017年   17篇
  2016年   23篇
  2015年   35篇
  2014年   30篇
  2013年   34篇
  2012年   35篇
  2011年   28篇
  2010年   13篇
  2009年   10篇
  2008年   12篇
  2007年   15篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
1.
Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group.  相似文献   
2.
Cell cycle specificity of tumor necrosis factor and its receptor   总被引:1,自引:0,他引:1  
Phase specificity in the TNF cytotoxic effect and the number of TNF binding receptors was investigated using L-M cells incubated synchronously from the S phase. TNF cytotoxicity was observed to occur at various levels during the cell cycle, with peak effect in the G2-M phase. Analysis with 125I-labeled TNF to determine the number of receptors binding TNF in the various cell phases shewed a phase specificity with the maximum number occurring in the G2-M phase, similar to the peak in cytotoxicity. The results suggest the existence of a cell cycle specificity in the cytotoxicity of TNF which is apparently related to changes in the number of receptors capable of binding TNF.  相似文献   
3.
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   
4.
BackgroundSome observational studies indicate an association of 25-hydroxy vitamin D (25(OH)D) insufficiency and atherogenic cholesterol concentrations. The aim of this study was to investigate relationship between 25(OH)D concentrations and lipid parameters in end stage renal disease (ESRD) patients, separately for predialysis, hemodialysis and peritoneal dialysis patients.MethodsWe have adjusted 25(OH)D concentrations for seasonal variability with cosinor analysis, and performed all further analysis using these corrected 25(OH)D concentrations. Concentrations of 25(OH)D and the lipid parameters were determined in 214 ESRD patients and 50 control group participants. The analysis included the measurement of 25(OH)D by HPLC, apolipoprotein (Apo) AI, ApoB and Lp(a) by nephelometry, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) by spectrophotometry and manually calculated ApoB/ApoAI and LDL-C/HDL-C ratio.ResultsESRD patients with adjusted 25(OH)D concentrations of 50 nmol/L had significantly higher TC (P = 0.005) and ApoAI (P = 0.049). Significantly higher HDLC (P = 0.011) and ApoAI (P = 0.020) were found in hemodialysis patients with the 25(OH)D concentrations of 50 nmol/L. The other analyzed lipid parameters differed significantly between predialysis, hemodialysis and peritoneal dialysis patients with 25(OH)D concentrations of < 50 nmol/L.ConclusionsOur study indicate the significant relationship between 25(OH)D repletion and optimal concentrations of lipid parameters in ESRD patients. Further research is necessary to explain whether joint evaluation of vitamin D status and lipid abnormalities could improve cardiovascular outcome in ESRD patients.  相似文献   
5.
Sorafenib tosylate (SORt) is an oral multikinase inhibitor used for treatment of advanced renal cell, liver, and thyroid cancers. In this study, this drug was synthesized and its antiproliferative activities against HCT116 and CT26 cells were assessed. The interaction of SORt with β‐lactoglobulin (BLG) was studied using different fluorescence techniques, circular dichroism (CD), zeta potential measurements, and docking simulation. The results of infrared (IR), mass, HNMR, and CNMR spectra demonstrated that the drug was produced with high quality, purity, and efficiency. SORt showed potent cytotoxicity against HCT116 and CT26 cells with IC50 of 8.12 and 5.42 μM, respectively. For BLG binding of SORt, the results showed that static quenching was the cause of the high affinity drug–protein interaction. Three‐dimensional fluorescence and synchronous spectra indicated that SORt conformation was changed at different levels. CD suggested that the α‐helix content remained almost constant in the BLG–SORt complex, whereas random coil content decreased. Zeta potential values of BLG were more positive after binding with SORt, due to electrostatic interactions between BLG and SORt. Thermodynamic parameters confirmed van der Waals and hydrogen bond interactions in the complex formation. Molecular modelling predicted the presence of hydrogen bonds and electrostatic forces in the BLG–SORt system, which was consistent with the experimental results.  相似文献   
6.
EcoHealth - Wild birds are important in the transmission of many zoonotic pathogens such as salmonella and avian influenza virus (AIV). The current study investigated the presence of bacterial and...  相似文献   
7.
Plasmonics - The guiding properties of a symmetric conductor–gap–dielectric system consists of a metal film symmetrically surrounded by media of two dielectrics, and is theoretically...  相似文献   
8.
Accumulating evidence has indicated that deregulation of lncRNAs plays essential roles in colorectal cancer (CRC) carcinogenesis. The goal of this study was to analyze the expression of lncRNAs in colorectal cancer and their association with clinicopathological variables. Bioinformatics analysis of published CRC microarray data was performed to identify the important lncRNAs. The expression levels of candidate genes were assessed in the human colon cancer/normal cell lines, CRC, adenomatous colorectal polyps, and their marginal tissues by qRT-PCR. Moreover, the methylation status of the TRPM2-AS1 promoter was studied using qMSP assay. Furthermore, we investigated the molecular mechanisms of these lncRNAs in CRC progression using in silico analysis. Microarray analysis revealed that lncRNAs SNHG6, MIR4435-2HG, and TRPM2-AS1 were upregulated in CRC. These results were validated in colon cell lines. Moreover, qRT-PCR showed that the expression levels of SNHG6 and TRPM2-AS1 were upregulated in the colorectal tumor tissues compared with their paired tissues. Nonetheless, there was no significant increase in MIR4435-2HG expression in CRC samples. Furthermore, we observed a significant hypomethylation of TRPM2-AS1 promoter and its activation in CRC tissues. By in silico analysis, we found that the lncRNAs upregulation could promote proliferation and drug resistance of colorectal cancer cells via miRNAs sponging and modulation of their targets expression. In conclusion, based on our results upregulation of SNHG6 and TRPM2-AS1, and hypomethylation of TRPM2-AS1 promoter might be considered as potential diagnostic biomarkers for CRC initiation and development.  相似文献   
9.
Plodia interpunctella and Oryzaephilus surinamensis are found in food storehouses including dates and palm storages. The current study aimed to determine competition and overlap potentials of the two pests of date fruits. Time series models were used to study two species populations and logistic growth model to estimate the effect of density of the species. The results revealed the environmental capacities of O. surinamensis and P. interpunctella were 433 and 1610 (maximum number per 20 g), respectively, and the population growth rates (r) were 1.2 and 1.3, respectively. Ecological balances of the two species were close to each other from the first to the third week. The population of O. surinamensis decreased in the fourth week of the competition. The highest population balance of the two species was in the 14th week. The potential of exploitable ecological niches (eij) and the amount of non-exploited ecological niches by any species (zij) for O. surinamensis was higher than for P. interpunctella from the 8th week untill the end of sampling period. The overlap of ecological niches in the two species (D) ranged from 0.94 to 1, indicating a complete overlap of temporal activity in the two populations on date palm. The current results of this study can be used by integrated pest management specialists. Information over the effects of species competition on population dynamics and their coexistence can be used to predict population status and to adopt simple pest control methods.  相似文献   
10.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号