首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2008年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 171 毫秒
1
1.
2.
The aim of this study was to measure the alterations in serum selenium (Se), copper (Cu), zinc (Zn), and iron (Fe) concentrations and their carrier proteins, ceruloplasmin (Cp), transferrin (Tf) albumin, and related antioxidant enzyme activities, erythrocyte Cu-Zn Superoxide dismutase (Cu-Zn SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in patients with cutaneous leishmaniasis (CL). Erythrocyte Cu-Zn SOD activities, serum Cu concentrations, and Cp levels were found to be significantly higher in the patients group than those of controls. However, GSH-Px and CAT activities and Se, Zn, Fe, and Tf levels were lower in patients than in the control subjects. There were positive important correlation’s between Cu-Zn SOD and Cp, Cu-Zn SOD and Cu, Cp and Cu, GSH-Px and Se, and Fe and CAT in the patients group. Our results showed that serum essential trace elements Se, Zn, Cu, and Fe concentrations and their related enzymes Cu-Zn SOD, GSH-Px, and CAT activities change in CL patients. The changes may be a part of defense strategies of organism and are induced by the hormonelike substances.  相似文献   
3.
4.
5.
Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNβ production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNβ-promoter activity, whereas all six genes induced a collapse in IFNβ mRNA levels, corresponding with suppressed IFNβ protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.  相似文献   
6.
Flavivirus replication is intimately involved with remodelled membrane organelles that are compartmentalised for different functions during their life cycle. Recent advances in lipid analyses and gene depletion have identified a number of host components that enable efficient virus replication in infected cells. Here, we describe the current understanding on the role and contribution of host lipids and membrane bending proteins to flavivirus replication, with a particular focus on the components that bend and shape the membrane bilayer to induce the flavivirus‐induced organelles characteristic of infection.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号