首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.

Microbes with enhanced 1-butanol tolerance have the potentials to be utilized in various biotechnological processes. To achieve the rational design of such strains, we previously conducted an untargeted metabolomics analysis of Bacillus subtilis under 1-butanol stress and uncovered a novel type of microbial responses as the alterations in the glycerolipid and phospholipid composition. However, the current knowledge about the relevance of these changes on 1-butanol tolerance remains quite limited. Here, we constructed the B. subtilis mutants with disruption in the pssA, ugtP (U), mprF (M), yfnI, and yfnI/mprF genes in the membrane lipid biosynthetic pathways. The 1-butanol tolerance test indicated markedly increased and decreased 1-butanol resistance in M and U compared to the wild-type strain, respectively, and slight effects in other strains under high stress level. Further examination of the lipid contents of these strains in the presence of 1-butanol by liquid chromatography–mass spectrometry demonstrated an elevated ratio of neutral and anionic to cationic lipids in direct relation with an improved 1-butanol tolerance. Last, cell morphological studies showed the shortening of only the U cells, compared to the wild-type. All strains including U were capable of elongating by 14–24% under 1-butanol stress. Together, the studies indicated the involvement of membrane lipid biosynthetic genes, which regulated glycerolipid and phospholipid composition, on 1-butanol tolerance and allowed for the procurement of M with enhanced 1-butanol tolerance trait, highlighting the usefulness of the overall approaches on discovery of novel biological insights and engineering of microorganisms with desired resistance characteristics.

  相似文献   
2.
Seasonal changes are major factors affecting environmental conditions which induce multiple stresses in plants, leading to changes in protein relative abundance in the complex cellular plant metabolic pathways. Proteomics was applied to study variations in proteome composition of Butea. superba tubers during winter, summer and rainy season throughout the year using two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight tandem mass spectrometry. A total of 191 protein spots were identified and also classified into 12 functional groups. The majority of these were mainly involved in carbohydrate and energy metabolism (30.37 %) and defense and stress (18.32 %). The results exhibited the highest numbers of identified proteins in winter-harvested samples. Forty-five differential proteins were found in different seasons, involving important metabolic pathways. Further analysis indicated that changes in the protein levels were due mainly to temperature stress during summer and to water stress during winter, which affected cellular structure, photosynthesis, signal transduction and homeostasis, amino-acid biosynthesis, protein destination and storage, protein biosynthesis and stimulated defense and stress mechanisms involving glycolytic enzymes and relative oxygen species catabolizing enzymes. The proteins with differential relative abundances might induce an altered physiological status within plant tubers for survival. The work provided new insights into the better understanding of the molecular basis of plant proteomes and stress tolerance mechanisms, especially during seasonal changes. The finding suggested proteins that might potentially be used as protein markers in differing seasons in other plants and aid in selecting B. superba tubers with the most suitable medicinal properties in the future.  相似文献   
3.
4.
5.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves.Key words: herbivory, jasmonic acid and ethylene crosstalk, Nicotiana attenuata, nicotine, trypsin proteinase inhibitors (TPIs)  相似文献   
6.
7.
8.
9.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   
10.
Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号