首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   11篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   6篇
  2015年   14篇
  2014年   21篇
  2013年   12篇
  2012年   21篇
  2011年   21篇
  2010年   16篇
  2009年   9篇
  2008年   11篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   11篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1975年   3篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
1.
G P Kaushal  A D Elbein 《Biochemistry》1987,26(24):7953-7960
The beta-mannosyltransferase that catalyzes the synthesis of Man-beta-GlcNAc-GlcNAc-PP-dolichol from GDP-mannose and dolichyl-PP-GlcNAc-GlcNAc was solubilized from microsomes of suspension-cultured soybean cells by treatment with 1.5% Triton X-100 and was purified about 700-fold by chromatography on DEAE-cellulose, hydroxylapatite, and a GDP affinity column. The purified enzyme was reasonably stable in the presence of 20% glycerol and 0.5 mM dithiothreitol. The enzyme required either detergent (Triton X-100 or NP-40) or phospholipid for maximum activity, but the effects of these two were not additive. Thus, either phosphatidylcholine or Triton X-100 could give maximum stimulation. In terms of phospholipid stimulation, both the head group and the acyl chain appeared to be important since phosphatidylcholines with 18-carbon unsaturated fatty acids were most effective. The purified enzyme had a sharp pH optimum of 6.9-7.0 and required a divalent cation. Mg2+ was the best metal ion with optimum activity occurring at 6 mM, but Mn2+ was reasonably effective while Ca2+ was slightly stimulatory. The Km for GDP-mannose was calculated to be 1.7 X 10(-6) M and that for dolichyl-PP-GlcNAc-GlcNAc about 9 X 10(-6) M. The enzyme was inhibited by a number of guanosine nucleotides such as GDP-glucose, GDP, GMP, and GTP, but various uridine and adenosine nucleotides were without effect. The purified enzyme was apparently free of alpha-1,3-mannosyltransferase (and perhaps other mannosyltransferases) and dolichyl-P-mannose synthase since the only product seen from dolichyl-PP-GlcNAc-GlcNAc and GDP-mannose was Man-beta-GlcNAc-GlcNAc-PP-dolichol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Australine [(1R,2R,3R,7S,7aR)-3-(hydroxymethyl)-1,2,7-trihydroxypyrrolizid ine] is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis [Molyneux et al. (1988) J. Nat. Prod. (in press)]. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, we tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the alpha-glucosidase amyloglucosidase (50% inhibition at 5.8 microM), but it did not inhibit beta-glucosidase, alpha- or beta-mannosidase, or alpha- or beta-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc3Man7-9(GlcNAc)2-oligosaccharides.  相似文献   
3.
Two arylmannosidases (signified as A and B) were purified tohomogeneity from soluble and microsomal fractions of mung beanseedlings. Arylmannosidase A from the microsomes appeared thesame on native gels and on SDS gels as soluble arylmannosidaseA, the same was true for arylmannosidase B. Sedimentation velocitystudies indicated that both enzymes were homogeneous, and thatarylmannosidase A had a molecular mass of 237 kd while B hada molecular mass of 243 kd. Arylmannosidase A showed two majorprotein bands on SDS gels with molecular masses of 60 and 55kd, and minor bands of 79, 39 and 35 kd. All of these bandswere N-linked since they were susceptible to digestion by endo-glucosaminidaseH. In addition, at least the major bands could be detected byWestern blots with antibody raised against the xylose moietyof N-linked plant oligosaccharides, and they could also be labeledin soybean suspension cells with [2–3H]mannose. ArylmannosidaseB showed three major bands with molecular masses of 72, 55 and45 kd, and minor bands of 42 and 39 kd. With the possible exceptionof the 45 and 42 kd bands, all of these bands are glycoproteins.Arylmannosidases A and B showed somewhat different kineticsin terms of mannose release from high-mannose oligosaccharides,but they were equally susceptible to inhibition by swainsonineand mannostatin A. Polyclonal antibody raised against the arylmannosidaseB cross-reacted equally well with arylmannosidase A from mungbean seedlings and with arylmannosidase from soybean cells.However, monoclonal antibody against mung bean arylmannosidaseA was much less effective against arylmannosidase B. Antibodywas used to examine the biosynthesis and structure of the carbohydratechains of arylmannosidase in soybean cells grown in [2–3H]mannose.Treatment of the purified enzyme with Endo H released 50% ofthe radioactivity, and these labeled oligosaccharides were ofthe high-mannose type, i.e. mostly Man9GlcNAc. The precipitatedprotein isolated from the Endo H treatment still contained 50%of the radioactivity, and this was present in modified structuresthat probably contain xylose residues. Mung beans mannosidases glycoproteins -soybean--mannosidases xylose-containing N-linked glycoproteins  相似文献   
4.
In this study, we compared the effects of 2,6-dideoxy-2,6-imino-7-O-(beta-D-glucopyranosyl)-D-glycero-L-gulohep titol (MDL) to those of the glucosidase I inhibitor, castanospermine, on the purified processing enzymes glucosidases I and II. WE also compared the effects of these two inhibitors on glycoprotein processing in cell culture using influenza virus-infected Madin-Darby canine kidney cells as a model system. With the purified processing enzymes, castanospermine was a better inhibitor of glucosidase I than of glucosidase II, whereas MDL is more effective against glucosidase II than glucosidase I. In cell culture at the appropriate dose, MDL also preferentially affected glucosidase II. Thus, at 250 micrograms/ml MDL, the major [3H]glucose-labeled (or [3H]mannose-labeled) glycopeptide from the viral hemagglutinin was susceptible to endoglucosaminidase H, and the oligosaccharide liberated by this treatment was characterized as a Glc2Man7-9GlcNAc on the basis of size, resistance to digestion by glucosidase I (but sensitivity to glucosidase II), methylation analysis, and Smith degradation studies. These data indicate that at appropriate concentrations of MDL (250 micrograms/ml), one can selectively inhibit glucosidase II in Madin-Darby canine kidney cells. However, at higher concentrations of inhibitor (500 micrograms/ml), both enzymes are apparently affected. Since MDL did not greatly inhibit the synthesis of lipid-linked saccharides or the synthesis of protein or RNA, it should be a useful tool for studies on the biosynthesis and role of N-linked oligosaccharides in glycoprotein function.  相似文献   
5.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   
6.
Cultures of soybean cells incorporate [5,6-3H]-l-fucose into various cellular components including lipids and proteins. The membrane glyco-proteins were digested with pronase to produce glycopeptides, and the glycopeptides were isolated on columns of Biogel P-4. The major fucoselabeled glycopeptide sized as a Hexose15-17-N-acetylglucosamine2 (GlcNAc2) on columns of Biogel P-4. Fucose incorporation was also examined in the presence of the processing inhibitor swainsonine, and the glycosylation inhibitor tunicamycin. In the presence of swainsonine, the incorporation of fucose was not reduced but the glycopeptides were smaller in size and migrated like Hexose12-13-GlcNAc2 structures. On the other hand, tunicamycin inhibited the incorporation of fucose into the glycopeptides by 70 to 80%, indicating that the l-fucose was present in N-linked oligosaccharides.  相似文献   
7.
H A Bates  A Kaushal  P N Deng  D Sciaky 《Biochemistry》1984,23(14):3287-3290
Histopine, an unusual amino acid derivative of histidine isolated from crown gall tumors of sunflowers (Helianthus annus) inoculated with Agrobacterium tumefaciens strain B6, was previously assigned the gross structure N-(1-carboxyethyl) histidine (2). A diastereomeric mixture containing histopine (2a and 2b) was readily prepared by reductive alkylation of (S)-histidine (1) with pyruvic acid and sodium cyanoborohydride. The individual diastereomers were prepared by reaction of (S)-histidine with (R)- and (S)-2-bromopropionic acid. (R)-N-(1-Carboxyethyl)-(S)-histidine (2a) supports the growth of A. tumefaciens whereas (S)-N-(1-carboxyethyl)-(S)-histidine (2b) is inactive. Therefore, we assign structure 2a to histopine.  相似文献   
8.
Target antigens in malaria transmission blocking immunity   总被引:7,自引:0,他引:7  
Malaria transmission blocking immunity has been found to operate against two distinct phases of development of malaria parasites in the mosquito midgut: (i) against the extracellular gametes and newly fertilized zygotes shortly after ingestion by a mosquito of parasitized blood and (ii) against the zygotes during their subsequent development into ookinetes. Immunity is antibody-mediated and stage-specific. A set of three proteins, synthesized in the gametocytes, expressed on the surface of the gametes and newly fertilized zygotes and subsequently shed during later transformation of the zygotes, has been identified as the target antigens of anti-gamete fertilization blocking antibodies. A single protein, synthesized and expressed on the zygote surface during its development to ookinetes, has been identified as the target of antibodies which block the development of the fertilized parasites in the mosquito. Immunization of human populations against gamete or zygote antigens, while not directly protecting an immunized individual from inflection, would reduce the transfer of malaria within the population. Such immunity, in addition to reducing the overall rate of malaria transmission, would, if combined with a vaccine against the asexual (disease-causing) stages, reduce the chance of selection of parasites that are resistant to the asexual vaccine by preventing their entry into the mosquito population.  相似文献   
9.
The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.  相似文献   
10.
Mannostatin A is a metabolite produced by the microorganism Streptoverticillium verticillus and reported to be a potent competitive inhibitor of rat epididymal alpha-mannosidase. When tested against a number of other arylglycosidases, mannostatin A was inactive toward alpha- and beta-glucosidase and galactosidase as well as beta-mannosidase, but it was a potent inhibitor of jack bean, mung bean, and rat liver lysosomal alpha-mannosidases, with estimated IC50's of 70 nM, 450 nM, and 160 nM, respectively. The type of inhibition was competitive in nature. This compound also proved to be an effective competitive inhibitor of the glycoprotein-processing enzyme mannosidase II (IC50 of about 10-15 nM with p-nitrophenyl alpha-D-mannopyranoside as substrate, and about 90 nM with [3H]mannose-labeled GlcNAc-Man5GlcNAc as substrate). However, it was virtually inactive toward mannosidase I. The N-acetylated derivative of mannostatin A had no inhibitory activity. In cell culture studies, mannostatin A also proved to be a potent inhibitor of glycoprotein processing. Thus, in influenza virus infected Madin Darby canine kidney (MDCK) cells, mannostatin A blocked the normal formation of complex types of oligosaccharides on the viral glycoproteins and caused the accumulation of hybrid types of oligosaccharides. This observation is in keeping with other data which indicate that the site of action of mannostatin A is mannosidase II. Thus, mannostatin A represents the first nonalkaloidal processing inhibitor and adds to the growing list of chemical structures that can have important biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号