首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 296 毫秒
1
1.
Although coenzyme Q10 (CoQ10) supplementation has shown to reduce pain levels in chronic pain, the effects of CoQ10 supplementation on pain, anxiety, brain activity, mitochondrial oxidative stress, antioxidants, and inflammation in pregabalin-treated fibromyalgia (FM) patients have not clearly elucidated. We hypothesised that CoQ10 supplementation reduced pain better than pregabalin alone via reducing brain activity, mitochondrial oxidative stress, inflammation, and increasing antioxidant levels in pregabalin-treated FM patients. A double-blind randomised placebo-controlled trial was conducted. Eleven FM patients were enrolled with 2 weeks wash-out then randomly allocated to 2 treatment groups; pregabalin with CoQ10 or pregabalin with placebo for 40 d. Then, patients in CoQ10 group were switched to placebo, and patients in placebo group were switched to CoQ10 for another 40 d. Pain pressure threshold (PPT), FM questionnaire, anxiety, and pain score were examined. Peripheral blood mononuclear cells (PBMCs) were isolated to investigate mitochondrial oxidative stress and inflammation at day 0, 40, and 80. The level of antioxidants and brain positron emission tomography (PET) scan were also determined at these time points. Pregabalin alone reduced pain and anxiety via decreasing brain activity compared with their baseline. However, it did not affect mitochondrial oxidative stress and inflammation. Supplementation with CoQ10 effectively reduced greater pain, anxiety and brain activity, mitochondrial oxidative stress, and inflammation. CoQ10 also increased a reduced glutathione levels and superoxide dismutase (SOD) levels in FM patients. These findings provide new evidence that CoQ10 supplementation provides further benefit for relieving pain sensation in pregabalin-treated FM patients, possibly via improving mitochondrial function, reducing inflammation, and decreasing brain activity.  相似文献   
2.
The extraction temperature had a significant impact on the concentration of polysaccharides derived from solid-liquid extraction of Spirulina. The polysaccharide concentration was significantly higher when the extraction was performed at 90°C than when it was performed at 80, 70, and 50°C. This result is related to the diffusion coefficients of the polysaccharides, which increased from 1.07 × 10?12 at 50°C to 3.02 × 10?12 m2/sec at 90°C. Using the Arrhenius equation, the pre-exponential factor (D 0 ) and the activation energy (E a ) for Spirulina polysaccharide extraction were calculated as 7.958 × 10?9 m2/sec and 24.0 kJ/mol, respectively. Among the methods used for the separation of Spirulina polysaccharides, cetyltrimethylammonium bromide (CTAB, method I) and organic solvent (ethanol, in methods II and III) provided similar yields of polysaccharides. However, the separation of polysaccharides using an ultrafiltration (UF) process (method III) and ethanol precipitation was superior to separation via CTAB or vacuum rotary evaporation (method II). The use of a membrane with a molecular weight cut-off (MWCO) of 30 kDa and an area of 0.01 m2 at a feed pressure of 103 kPa with a mean permeate flux of 39.3 L/m2/h and a retention rate of 95% was optimal for the UF process. The addition of two volumes (v/v) of ethanol, which gave a total polysaccharide content of approximately 4% dry weight, was found to be most suitable for polysaccharide precipitation. The results of a Sepharose 6B column separation showed that the molecular weights of the polysaccharides in fractions I and II were 212 and 12.6 kDa, respectively.  相似文献   
3.
A mutant of Spirulina(Arthrospira) platensis, strain I22,obtained by mutagenesis with ethylmethanesulfonate, was partially defective inthe production of -linolenic acid. However, when compared with the wildform, the I22 mutant almost lost its capacity to grow at low temperatures,although at optimal temperature growth was unaffected. Measurement of themutant's photosynthetic characteristics, including O2-evolution,Pmaxand light saturation values, revealed significantly lower values than for thewild type, in contrast to the higher content of photosynthetic pigments,chlorophyll and phycocyanin. Whereas the total activity of photosynthesis oftheI22 mutant was 58% lower than that of the wild type, the PS II activity of theI22 mutant was 23% higher. On the other hand, the I22 mutant was 69% lower inPSI activity, and the growth rate of this mutant was limited at high lightintensity. These results indicated that the defect in the PS I complex of theI22 mutant may reduce its ability to utilize light to generate the energy usedin diverse biochemical processes, including fatty acid desaturation.  相似文献   
4.
Temperature and pH play an important role in the stability of phycocyanin, a natural blue colorant. Systematic investigations showed the maximum stability of phycocyanin was in the pH range 5.5–6.0. Incubation at temperatures between 47 and 64 °C caused the concentration (CR) and half-life of phycocyanin in solution to decrease rapidly. The CR value remained at approximately 50% after incubating for 30 min at 59 °C. After heating at 60 °C for 15 min, the CR value of phycocyanin at pH 7.0 was maintained at around 62–70% when 20–40% glucose or sucrose was added, and the half-life increased from 19 min to 30–44 min. 2.5% sodium chloride was found to be an effective preservative for phycocyanin at pH 7.0 as a CR value of 76% was maintained and the half-life of 67 min was increased.  相似文献   
5.
The highest purity ratio of phycocyanin extract was obtained when fresh biomass was used as raw material. The crude extract was purified by membrane process using microfiltration and ultrafiltration. Membrane of pore sizes 5 μm, at feed flow rate of 150 mL min−1, permeate flux of 58.5 L h−1 m−2 was selected for coarse filtration and membrane with pore size 0.8/0.2 μm at the flow rate of 100 mL min−1, permeate flux of 336 L h−1 m−2 was selected for fine filtration, giving phycocyanin recovery of 88.6% and 82.9%, respectively. For ultrafiltration, membrane with MWCO at 50 kDa, 69 kPa and 75 mL min−1 of flow rate with a mean permeate flux 26.8 L h−1 m−2 and a retention rate of 99% was found to be optimal. Under these filtration conditions, food grade phycocyanin with the purity around 1.0 containing c-phycocyanin as the major component was obtained.  相似文献   
6.
Ageing is a strong independent risk factor for disability, morbidity and mortality. Post‐mitotic cells including those in the heart are a particular risk to age‐related deterioration. As the occurrence of heart disease is increasing rapidly with an ageing population, knowledge regarding the mechanisms of age‐related cardiac susceptibility and possible therapeutic interventions needs to be acquired to prevent advancing levels of heart disease. To understand more about the ageing heart, numerous aged animal models are being used to explore the underlying mechanisms. Due to time‐consuming for investigations involving naturally aged animals, mimetic ageing models are being utilized to assess the related effects of ageing on disease occurrence. d ‐galactose is one of the substances used to instigate ageing in various models, and techniques involving this have been widely used since 1991. However, the mechanism through which d ‐galactose induces ageing in the heart remains unclear. The aim of this review was to comprehensively summarize the current findings from in vitro and in vivo studies on the effects of d ‐galactose‐induced ageing on the heart, and possible therapeutic interventions against ageing heart models. From this review, we hope to provide invaluable information for future studies and based on the findings from experiments involving animals, we can inform possible therapeutic strategies for the prevention of age‐related heart diseases in clinical settings.  相似文献   
7.
To test the hypothesis that an impaired mitochondrial function is associated with altered central venous oxygen saturation (ScvO2), venous-to-arterial carbon dioxide tension difference (delta PCO2) or serum lactate in sepsis patients. This prospective cohort study was conducted in a single tertiary emergency department between April 2017 and March 2019. Patients with suspected sepsis were included in the study. Serum lactate was obtained in sepsis, ScvO2 and delta PCO2 were evaluated in septic shock patients. Mitochondrial function was determined from the peripheral blood mononuclear cells. Forty-six patients with suspected sepsis were included. Of these, twenty patients were septic shock. Mitochondrial oxidative stress levels were increased in the high ScvO2 group (ScvO2 > 80%, n = 6), compared with the normal (70%-80%, n = 9) and low ScvO2 (<70%, n = 5) groups. A strong linear relationship was observed between the mitochondrial oxidative stress and ScvO2 (r = .75; P = .01). However, mitochondrial respiration was increased in the low ScvO2 group. In addition, mitochondrial complex II protein levels were significantly decreased in the high ScvO2 group (P < .05). Additionally, there was no correlation between serum lactate, delta PCO2, and mitochondria oxidative stress or mitochondria function. ScvO2 can be potentially useful for developing new therapeutics to reduce mitochondrial dysfunction in septic shock patient.  相似文献   
8.
Trigeminal neuralgia (TN) is the neuropathic pain. Mitochondrial dysfunction, increased oxidative stress, and inflammation demonstrated in chronic pain. Carbamazepine (CBZ) is the first-line drug for TN, however, it is still insufficient. Coenzyme Q10 (CoQ10) has been used as the additional supplement for pain therapy. Nonetheless, mitochondrial respiratory proteins, oxidative stress, and inflammation in TN, and the add-on effects of CoQ10 on those defects have never been investigated. CBZ-treated TN-patients, naïve TN-patients, and control subjects were included. CBZ-treated TN-patients were randomised into two subgroups, received either CoQ10 or placebo for 2 months. Pain levels were evaluated, and peripheral blood mononuclear cells were isolated to determine the oxidative stress, mitochondrial oxidative phosphorylation (OXPHOS), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and cytokines including TNF-α, IL-1β and IL-18 mRNA expression. Pain scales, oxidative stress, and OXPHOS levels were greater in naïve TN-patients than control, whereas the cytokine profiles were unchanged. Although pain scales were lower in CBZ-treated TN-patients than in naïve TN-patients, oxidative stress, OXPHOS, and cytokine expression profiles were not different. PGC-1α levels found to be increased in CBZ-treated TN patients when compared with the naïve group. CoQ10 supplement in CBZ-treated TN patients reduced pain scale and oxidative stress and increased antioxidants levels when compared with placebo group. However, OXPHOS, PGC-1α, and cytokines were not different between groups. These findings suggest that increased oxidative stress could be potentially involved in the pathogenesis of TN. CoQ10 supplements can reduce oxidative stress, leading to more effective pain reduction in TN patients being treated with CBZ.  相似文献   
9.

Background

Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats.

Methodology

Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats.

Conclusion

Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate.  相似文献   
10.
Contrast-induced acute kidney injury (CI-AKI) is the common hospitalized acute kidney injury (AKI). However, the diagnosis by serum creatinine might not be early enough. Currently, the roles of circulating mitochondria in CI-AKI are still unclear. Since early detection is crucial for treatment, the association between circulating mitochondrial function and CI-AKI was tested as a potential biomarker for detection of CI-AKI. Twenty patients with chronic kidney disease (CKD) undergoing percutaneous coronary intervention (PCI) were enrolled. Blood and urine samples were obtained at the time of PCI, and 6, 24, 48 and 72 h after PCI. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) were measured. Oxidative stress, inflammation, mitochondrial function, mitochondrial dynamics and cell death were determined from peripheral blood mononuclear cells. Forty percent of patients developed AKI. Plasma NGAL levels increased after 24 h after receiving contrast media. Cellular and mitochondrial oxidative stress, mitochondrial dysfunction and decreased mitochondrial fusion occurred at 6 h following contrast media exposure. Subgroup of AKI had higher %necroptosis cells and TNF-α mRNA expression than subgroup without AKI. Collectively, circulating mitochondrial dysfunction could be an early predictive biomarker for CI-AKI in CKD patients receiving contrast media. These findings provide novel strategies to prevent CI-AKI according to its pathophysiology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号