首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   18篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   13篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   15篇
  2007年   8篇
  2006年   8篇
  2005年   12篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
1.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   
2.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
3.
Evolutionary Ecology - Body size and secondary sexual characteristics are drivers of male reproductive success among polygynous species. A gene complex found to be associated with morphology in...  相似文献   
4.
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5′-adenosyl)- l -methionine (SAM) and 5′-deoxy-5′-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.  相似文献   
5.
6.
Sphingolipid activator proteins (SAPs), GM2 activator protein (GM2AP) and saposins (Saps) A-D are small, enzymatically inactive glycoproteins of the lysosome. Despite of their sequence homology, these lipid-binding and -transfer proteins show different specificities and varying modes of action. Water-soluble SAPs facilitate the degradation of membrane-bound glycosphingolipids with short oligosaccharide chains by exohydrolases at the membrane-water interface. There is strong evidence that degradation of endocytosed components of the cell membrane takes place at intraendosomal and intralysosomal membranes. The inner membranes of the lysosome differ from the limiting membrane of the organelle in some typical ways: the inner vesicular membranes lack a protecting glycocalix, and they are almost free of cholesterol, but rich in bis(monoacylglycero)phosphate (BMP), the anionic marker lipid of lysosomes. In this study, we prepared glycosylated Sap-B free of other Saps by taking advantage of the Pichia pastoris expression system. We used immobilized liposomes as a model for intralysosomal vesicular membranes to probe their interaction with recombinantly expressed Sap-B. We monitored this interaction using SPR spectroscopy and an independent method based on the release of radioactively labelled lipids from liposomal membranes. We show that, after initial binding, Sap-B disturbs the membrane structure and mobilizes the lipids from it. Lipid mobilization is dependent on an acidic pH and the presence of anionic lipids, whereas cholesterol is able to stabilize the liposomes. We also show for the first time that glycosylation of Sap-B is essential to achieve its full lipid-extraction activity. Removal of the carbohydrate moiety of Sap-B reduces its membrane-destabilizing quality. An unglycosylated Sap-B variant, Asn215His, which causes a fatal sphingolipid storage disease, lost the ability to extract membrane lipids at acidic pH in the presence of BMP.  相似文献   
7.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.  相似文献   
8.
The cell surface hydrophobicity of 60 isolates and three reference strains of Staphylococcus epidermidis was assayed by means of bacterial aggregation in liquid broth, phosphate-buffered saline, and in ammonium sulfate, as well as by affinity of the bacteria to n-hexadecane and polystyrene surfaces. In order to better characterize the isolates, the influence of bacterial growth time and enzyme treatment on cell hydrophobicity and the analysis of the slime production were also investigated. The strains presented the following profiles when assayed by the ammonium sulfate aggregation test (SAT): SAT < 1M, SAT 1M - <2M, SAT 2M - <4M, and SAT >or=4M. When SAT < 1M, the strains showed positive results for most of the cell surface hydrophobicity tests. None of the strains belonging to the groups with SAT >or= 1M showed spontaneous aggregation (SA), auto-aggregation (AA), or glass adherence, albeit 32 (62.7%) strains were polystyrene adherent and 42 (82.3%) presented weak adherence to n-hexadecane (>20%). The best correlation of the results was found among the AA and glass adherence tests (100%), followed by SA/ glass adherence (98%) and SA/ AA test (98%). The polystyrene adherence test and microbial adherence to n-hexadecane test (MATH) showed 78% correlation. Proteinase K treatment reduced bacterial adherence to polystyrene, but did not influence the SAT values. Three distinct groups of strains were distinguished by the polystyrene micromethod and glass tube adherence assay: 0.0-0.4 O.D. group, including non-glass adherent isolates; 0.5-0.7 O.D. group, including strains with variable profiles (adherent or non-adherent); and 0.8-1.3 O.D. group, composed of glass-adherent strains. Evaluation by a single method seemed not to reliably determine the surface hydrophobicity characteristics of S. epidermidis clinical isolates. Auto-aggregation properties of the strains that adhered to glass seemed related to slime expression, rather than cell surface hydrophobicity. Data also suggested involvement of protein components in adherence to polystyrene, but not in auto-aggregation properties assayed by SAT.  相似文献   
9.
The compound 5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide (EMPO) is a hydrophilic cyclic nitrone spin trap, which, in contrast to DMPO, forms a relatively stable superoxide adduct (t(1/2)=8.6 min) with an EPR spectrum similar to the respective DMPO adduct. In order to find the optimal degree of lipophilicity of this novel type of spin trap with respect to the detection of radicals formed during lipid peroxidation, the ethoxy group of EMPO was replaced by alkoxy substituents of increasing chain length, leading to the methoxy- (MeMPO), 1-propoxy- (PrMPO), 1-butoxy- (BuMPO), and 1-octyloxy- (OcMPO) derivatives of EMPO. The stability of their superoxide adducts was found to be strongly dependent on the size of the alkoxycarbonyl group. Increasing chain length of the alkoxyl substituent decreased the stability of alkoxyl radical adducts of MeMPO, EMPO, and PrMPO, but increased the stability of OcMPO adducts. The stability of alkoxyl radical adducts of BuMPO, on the other hand, were practically independent of the size of the alkoxyl group. Detection of lipid alkoxyl radicals formed by peroxidizing linoleic acid in a stationary system was therefore only possible with the most lipophilic spin trap, OcMPO. However, with the more hydrophilic spin traps MeMPO, EMPO, PrMPO, and BuMPO optimal EPR signal intensity could be obtained when a slow-flow system was used. Thus, within this series EMPO is the best spin trap for the detection of superoxide; OcMPO, on the other hand, is most suitable for the detection of lipid alkoxyl radicals.  相似文献   
10.
Analyzing mRNA-protein complexes using a yeast three-hybrid system   总被引:7,自引:0,他引:7  
RNA-protein interactions are essential for the proper execution and regulation of every step in the life of a eukaryotic mRNA. Here we describe a three-hybrid system in which RNA-protein interactions can be analyzed using simple phenotypic or enzymatic assays in Saccharomyces cerevisiae. The system can be used to detect or confirm an RNA-protein interaction, to analyze RNA-protein interactions genetically, and to discover new protein or RNA partners when only one is known. Multicomponent complexes containing more than one protein can be detected, identified, and analyzed. We describe the method and how to use it, and discuss applications that bear particularly on eukaryotic mRNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号