首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有111条查询结果,搜索用时 203 毫秒
1.
2.
The soybean pod borer, Maruca vitrata is one of the key insect pests of tropical legumes. It damages tender leaf axils, flower buds, flowers and pods by webbing and boring clusters of flowers and pods. In this study, we investigated the survival and life table parameters of M. vitrata on several leguminous crops; soybean (cvs. Daewon, Poongsannamool and Socheongja), azuki bean (cv. Hongeon), mung bean (cv. Sanpo), and cowpea (cv. Jangchae), compared to artificial diet to assess the antibiosis resistance to M. vitrata. The life‐variables of M. vitrata were significantly affected by the tested legume cultivars. None of the larvae fed cowpea cultivar Jangchae survived. The azuki bean cultivar Hongeon and mung bean cultivar Sanpo were found susceptible to M. vitrata, whereas cowpea cultivar Jangchae and soybean cultivar Daewon showed antibiosis resistance to M. vitrata. Further studies should examine the chemicals associated with leguminous crop cultivars and its mechanism to develop a control method against M. vitrata.  相似文献   
3.
Insecticidal and antifeeding activities against Plutella xylostella were observed using whole‐plant‐derived Perilla frutescens material. The active ingredient in P. frutescens was identified by spectroscopic analysis as the sesquiterpenoid α‐farnesene, which showed insecticidal activity against third‐instar larva of P. xylostella in a leaf‐dipping bioassay based on 24‐h LD50 values (LD50 = 53.7 ppm). The feeding inhibition rate of α‐farnesene was 82.98% against P. xylostella at 10 ppm, and the antifeeding responses were determined using an oscilloscope to detect electrophysiological responses. The electrophysiological responses of the medial styloconic sensillum (MSS) were approximately 7‐fold more sensitive at 100 ppm than those of the lateral styloconic sensillum (LSS). These results suggest that the insecticidal and antifeeding effect of α‐farnesene, which is a P. frutescens‐derived material, can be used as a potential control agent for P. xylostella.  相似文献   
4.
Glucose-6-phosphatase (G6Pase) is a multiple protein complex in the endoplasmic reticulum (ER) that includes a mechanism (known as T3) for glucose exit from the ER to the cytosol. The molecular identity of T3 is not known. T3 has been shown to be functional in the absence of GLUT2, indicating that it is not GLUT2. Here we found a 55-kDa protein in high-density microsomal fraction (HDM) of rat hepatocytes that is recognized by polyclonal GLUT2 antibody raised against the GLUT2 C-terminal 14-amino-acid-sequence peptide. HDM contained calnexin but no integrin-beta1 or Na/K ATPase in Western blotting. Significant GLUT2 immunoreactivity was colocalized with colligin, an ER marker, in confocal microscopy. Furthermore, the 55-kDa protein in HDM was labeled with a covalently reactive, impermeable glucose transporter substrate, 1,3-bis-(3-deoxy-D-glucopyranose-3-yloxy)-2-propyl 4-benzoyl-benzoate (B3GL) when hepatocyte homogenates, but not intact cells, were labeled. In addition glucose efflux from HDM vesicles was sensitive to B3GL treatment in a dose-dependent manner. Based on these findings, we suggest that T3 may be a novel facilitative glucose transporter that is highly homologous to GLUT2 in the C-terminal sequence, thus cross-reacting with the GLUT2 antibody. The finding will be useful in molecular identification and cloning of T3.  相似文献   
5.
Insulin-responsive aminopeptidase (IRAP) colocalizes with glucose transporter type 4 (GLUT4) in adipocytes and is recruited to the plasma membrane in response to insulin. Microinjection of peptides corresponding to the IRAP cytoplasmic domain sequences causes GLUT4 recruitment in adipocytes. Inhibitors of protein kinase C-zeta (PKC-zeta) abolish the insulin-induced GLUT4 recruitment in rat adipocytes. These findings suggest an interesting possibility that PKC-zeta may phosphorylate IRAP, playing a key role in GLUT4/IRAP recruitment. To test this possibility, here we studied the (32)P incorporation into IRAP catalyzed by PKC-zeta in insulin-stimulated cells. There was a small but significant (32)P incorporation into IRAP in rat adipocytes, which was partly abolished upon addition of a PKC-zeta pseudosubstrate, suggesting that PKC-zeta may be responsible in part for the IRAP phosphorylation in adipocytes. PKC-zeta also catalyzed the incorporation of (32)P not only into IRAP in GLUT4 vesicles isolated from rat adipocytes but also into the IRAP cytoplasmic domain inserts in glutathione S-transferase-fusion proteins, demonstrating direct IRAP phosphorylation by PKC-zeta. Reversed-phase HPLC, matrix-assisted laser desorption ionization mass spectrometry, and radiosequencing of the tryptic digests of the (32)P-labeled IRAP fusion proteins identified Ser-80 and Ser-91 as major phosphorylation sites. In GLUT4 vesicles, the (32)P incorporation into IRAP was exclusively localized at a 6.9-kDa tryptic fragment identified as IRAP(76-138) and the (32)P labeling at Ser-80 accounted for 80-90% of the total IRAP labeling, suggesting that Ser-80 is the major phosphorylation site in intact IRAP. These findings are consistent with the possibility that the IRAP cytoplasmic domain phosphorylation by PKC-zeta plays a key role in insulin-induced IRAP or GLUT4 recruitment in adipocytes.  相似文献   
6.
7.
The nitric oxide synthases (NOS), which require heme, tetrahydrobiopterin, FMN, FAD, and NADPH, catalyze the O2-dependent conversion of L-arginine to L-citrulline and nitric oxide. N(omega)-Allyl-L-arginine, a mechanism-based inactivator of neuronal NOS, also is a substrate, producing L-arginine, acrolein, and H2O (Zhang, H. Q.; Dixon, R. P., Marletta, M. A.; Nikolic, D.; Van Breemen, R.; Silverman, R. B. J. Am. Chem. Soc. 1997, 119, 10888). Two possible mechanisms for this turnover are proposed, one initiated by allyl C-H bond cleavage and the other by guanidino N H cleavage, and these mechanisms are investigated with the use of N(omega)-allyl-L-arginine (1), N(omega)-[1,1-(2)H2]allyl-L-arginine (7), N(omega)-allyl-N(omega)-hydroxy-L-arginine (2) and N(omega)-[1,1-(2)H2]allyl-N(omega)-hydroxy-L-arginine (8) as substrates. Significant isotope effects on the two kinetic parameters, kcat and kcat/Km, are observed in case of 1 and 7 during turnover, but not with 2 and 8. No kinetic isotope effects are observed for either compound in their role as inactivators. These results support a mechanism involving initial C-H bond cleavage of N(omega)-allyl-L-arginine followed by hydroxylation and breakdown to products.  相似文献   
8.
GLUT2, the major facilitative glucose transporter isoform expressed in hepatocytes, pancreatic beta-cells, and absorptive epithelial cells, is unique not only with its low affinity and broad substrate specificity as a glucose transporter, but also with its implied function as a glucose-sensor. As a first essential step toward structural and biochemical elucidation of these unique, GLUT2 functions, we describe here the differential solubilization and DEAE-column chromatography of rat hepatocyte GLUT2 protein and its reconstitution into liposomes. The reconstituted GLUT2 bound cytochalasin B in a saturable manner with an apparent dissociation constant (K(d)) of 2.3 x 10(-6) M and a total binding capacity (B(T)) of 8.1 nmol per mg protein. The binding was completely abolished by 2% mercury chloride, but not affected by cytochalasin E. Significantly, the binding was also not affected by 500 mM D-glucose or 3-O-methyl D-glucose (3OMG). The purified GLUT2 catalyzed mercury chloride-sensitive 3OMG uptake, and cytochalasin B inhibited this 3OMG uptake. The inhibition was dose-dependent with respect to cytochalasin B, but was independent of 3OMG concentrations. These findings demonstrate that our solubilized GLUT2 reconstituted in liposomes is at least 60% pure and functional, and that GLUT2 is indeed unique in that its cytochalasin B binding is not affected by its substrate (D-glucose) binding. Our partially purified GLUT2 reconstituted in vesicles will be useful in biochemical and structural elucidation of GLUT2 as a glucose transporter and as a possible glucose sensor.  相似文献   
9.
The synthesis of a novel series of aminoquinazoline derivatives 1ar and their antiproliferative activities against A375 human melanoma cell line were described. Among them, six compounds showed superior antiproliferative activities to Sorafenib as a reference compound. In particular, the representative compound 1q bearing chromen-4-one moiety exhibited excellent antiproliferative activity (IC50 = 0.006 μM) and good selectivity over HS27 fibroblast cell line.  相似文献   
10.
Synthesis of a new series of diarylureas and amides having pyrrolo[3,2-b]pyridine scaffold is described. Their in vitro antiproliferative activity against human melanoma cell line A375 and HS 27 human fibroblast cell line was tested and the effect of substituents on the pyrrolo[3,2-b]pyridine was investigated. The newly synthesized compounds, except meta-substituted derivatives (Ijk and Ivw), generally showed superior or similar activity against A375 to Sorafenib. Among all of these derivatives, compounds Ir and It having 5-benzylamide substituted 4′-amide moieties showed the most potent antiproliferative activity against A375.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号