首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   7篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  1996年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1969年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
Comparative studies were done on the cytoplasmic domain of the band 3 protein in the red cell membranes of the the human and the llama. Two approaches were used: crosslinking with o-phenanthroline/CuSO4, and cleavage with 2-nitro-5-thiocyanobenzoate. o-Phenanthroline/CuSO4 crosslinks the band 3 polypeptide chains in the human; in contrast band 3 in the llama is minimally crosslinked by this agent. 2-Nitro-5-thiocyanobenzoate cleaves band 3 in the human into a 23,000-dalton fragment; a similar fragment is not generated from the llama band 3. These studies show that the cysteine residue located 23,000 daltons from the N-terminus of band 3 in the human involved in these reactions is unavailable for crosslinking and cleavage in the llama. Species differences in the cytoplasmic domain of band 3 may contribute to the unusual resistance of llama red cells to osmotic, chemical and physically-induced deformation.  相似文献   
2.
Remodeling the shape of the skeleton in the intact red cell.   总被引:1,自引:0,他引:1       下载免费PDF全文
The role of the membrane skeleton in determining the shape of the human red cell was probed by weakening it in situ with urea, a membrane-permeable perturbant of spectrin. Urea by itself did not alter the biconcave disk shape of the red cell; however, above threshold conditions (1.5 M, 37 degrees C, 10 min), it caused an 18% reduction in the membrane elastic shear modulus. It also potentiated the spiculation of cells by lysophosphatidylcholine. These findings suggest that the contour of the resting cell is not normally dependent on the elasticity of or tension in the membrane skeleton. Rather, the elasticity of the skeleton stabilizes membranes against deformation. Urea treatment also caused the projections induced both by micropipette aspiration and by lysophosphatidylcholine to become irreversible. Furthermore, urea converted the axisymmetric conical spicules induced by lysophosphatidylcholine into irregular, curved and knobby spicules; i.e., echinocytosis became acanthocytosis. Unlike controls, the ghosts and membrane skeletons obtained from urea-generated acanthocytes were imprinted with spicules. These data suggest that perturbing interprotein associations with urea in situ allowed the skeleton to evolve plastically to accommodate the contours imposed upon it by the overlying membrane.  相似文献   
3.
The present study aimed at evaluating the ability of some isolated cyanobacterial and microalgal strains for the removal of ρ-chlorophenol (ρ-CP), an environmentally harmful contaminant. To identify the most efficient species, a screening program was carried out using 15 microalgal and cyanobacterial strains. Among them, Tetraselmis suecica was able to remove 67 % of the ρ-chlorophenol at an initial concentration of 20 mg L?1 from the medium within a 10-day period. The efficacy of the process was dependent on the ρ-chlorophenol concentration. At concentrations above 60 mg L?1 of the pollutant, no removal was observed due to the inhibitory effect of ρ-chlorophenol on the T. suecica cells. The effect of cell immobilization in alginate beads on T. suecica removal capacity was also examined. Using this technique, the removal efficacy for the initial ρ-CP concentration of 20 mg L?1 increased up to 94 %.  相似文献   
4.
The application of green-synthesis principles is one of the most impressive research fields for the production of nanoparticles. Different kinds of biological systems have been used for this purpose. In the present study, AuNPs (gold nanoparticles) were prepared within a short time period using a fresh cell extract of the marine microalga Tetraselmis suecica as a reducing agent of HAuCl4 (chloroauric acid) solution. The UV-visible spectrum of the aqueous medium containing AuNPs indicated a peak at 530 nm, corresponding to the surface plasmon absorbance of AuNPs. The X-ray diffraction pattern also showed a Bragg reflection related to AuNPs. Fourier-transform infrared spectroscopy was performed for analysis of surface functional groups of AuNPs. Transmission electron microscopy and particle-size-distribution patterns determined by the laser-light-scattering method confirmed the formation of well-dispersed AuNPs. The most frequent size of particles was 79 nm.  相似文献   
5.
Molecular Biology Reports - Celiac disease (CeD) and inflammatory bowel disease (IBD) are accompanied by impaired immune responses. To study the immune regulation of these diseases, we evaluated...  相似文献   
6.
Background

Regulatory T cells (Tregs) have an important role in the control of the immune responses. This study aimed to compare the frequency of peripheral blood (PB) CD4+?CD25+?FoxP3+?Treg cells and PB and duodenal expression levels of pro- and anti-inflammatory mediators in treated celiac disease (CD) patients and healthy controls.

Methods and results

Duodenal biopsy specimens and PB samples were collected from 60 treated CD patients and 60 controls. Flow cytometry analysis was conducted on peripheral blood mononuclear cell (PBMC) specimens and relative PB and duodenal mRNA expression levels of CD25, forkhead box P3 (Foxp3), interleukin (IL)-10 and granzyme B (GrzB) were evaluated using quantitative real-time PCR. The levels of serum IL-10 and IL-6 were tested with sandwich enzyme-linked immunosorbent assay kits. p values?<?0.05 were considered significant. Flow cytometry analysis showed a significant decrease in the number of Tregs in CD patients’ PBMC specimens (p?=?0.012). CD25 and Foxp3 PB mRNA expressions were also lower in CD patients without reaching the significance level (p?>?0.05). IL-10 PB mRNA and protein expression did not differ between the groups (p?>?0.05), and GrzB PB expression was significantly reduced in CD patients (p?=?0.001). In duodenal specimens of CD patients, while significantly increased CD25, Foxp3 mRNA expression (p?=?0.01 and 0.001, respectively) and decreased IL-10 mRNA expression (p?=?0.02) were observed, GrzB mRNA expression did not differ between groups (p?>?0.05). Moreover, a high serum level of IL-6 was observed in CD patients (p?=?0.001).

Conclusions

Despite following the gluten free diet, there may still be residual inflammation in the intestine of CD patients. Accordingly, finding a therapeutic approach based on strengthening the function of Treg cells in CD might be helpful.

  相似文献   
7.
Chondrocytes isolated from human fetal epiphyseal cartilage were seeded under mixed conditions into 15-mm-diameter polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to generate cartilage constructs. After seeding, the cell distributions in thick (4.75 mm) and thin (2.15 mm) PGA disks were nonuniform, with higher cell densities accumulating near the top surfaces. Composite scaffolds were developed by suturing together two thin PGA disks after seeding to manipulate the initial cell distribution before bioreactor culture. The effect of medium flow direction in the bioreactors, including periodic reversal of medium flow, was also investigated. The quality of the tissue-engineered cartilage was assessed after 5 weeks of culture in terms of the tissue wet weight, glycosaminoglycan (GAG), total collagen and collagen type II contents, histological analysis of cell, GAG and collagen distributions, and immunohistochemical analysis of collagen types I and II. Significant enhancement in construct quality was achieved using composite scaffolds compared with single PGA disks. Operation of the bioreactors with periodic medium flow reversal instead of unidirectional flow yielded further improvements in tissue weight and GAG and collagen contents with the composite scaffolds. At harvest, the constructs contained GAG concentrations similar to those measured in ex vivo human adult articular cartilage; however, total collagen and collagen type II levels were substantially lower than those in adult tissue. This study demonstrates that the location of regions of high cell density in the scaffold coupled with application of dynamic bioreactor operating conditions has a significant influence on the quality of tissue-engineered cartilage.  相似文献   
8.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   
9.
Insulin and moderate oxidative stress stimulate proliferation of ovarian theca-interstitial cells. The effects of these agents on selected signal transduction pathways were examined. PD98059 (inhibitor of MAP2K1, also known as MEK-1, upstream of extracellular signal-regulated protein kinases MAPK3/1, also known as ERK1/2), wortmannin (inhibitor of PIK3C2A, also known as PI3K), and rapamycin (inhibitor of FRAP1, also known as mTOR, upstream of RPS6KB1) each significantly decreased insulin and oxidative stress-induced proliferation of theca-interstitial cells. The greatest inhibition was observed in the presence of rapamycin; this effect occurred without a significant change in cell viability. Phosphorylation of AKT was stimulated by insulin only, while phosphorylation of MAPK3/1 and RPS6KB1 was increased by insulin and oxidative stress. Insulin-induced and oxidative stress-induced phosphorylation of RPS6KB1 was partly inhibited by wortmannin and partly by PD98059; the greatest inhibition was observed in the presence of a combination of wortmannin plus PD98059. Effects of insulin and oxidative stress on phosphorylation of RPS6KB1 were confirmed by kinase activity assays. These findings indicate that actions of insulin and oxidative stress converge on MAPK3/1 and RPS6KB1. Furthermore, we speculate that activation of RPS6KB1 may be in part induced via the MAPK3/1 pathway.  相似文献   
10.
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (~4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号