首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2022年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
2.
Macrophages are able to recognize, internalize and destroy a large number of pathogens, thus restricting the infection until adaptive immunity is initiated. In this work our aim was to analyze the surface charge of cells activated by carrageenan (CAR) and lipopolysaccharide (LPS) through light and electron microscopy approaches as well as the release of inflammatory mediators in vitro. The ultrastuctural analysis and the light microscopy data showed that in vivo administration of CAR represents a potent inflammatory stimulation for macrophages leading to a high degree of spreading, an increase in their size, in the number of the intracellular vacuoles and membrane projections as compared to the macrophages collected from untreated animals as well as mice submitted to LPS. Our data demonstrated that CAR stimulated-macrophages displayed a remarkable increase in nitric oxide production and PGE2 release as compared to the cells collected from non-stimulated and stimulated mice with LPS in vivo. On the other hand, non-stimulated macrophages as well as macrophages stimulated by LPS produce almost the same quantities of TNF-alpha, while in vivo stimulation by CAR leads to a 30-40% increase of cytokine release in vitro compared to the other groups. In conclusion, our morphological and biochemical data clearly showed that in vivo stimulation with CAR induces a potent inflammatory response in macrophages representing an interesting model to analyze inflammatory responses.  相似文献   
3.

Backgroud  

Extramedullary hematopoiesis (EMH) is defined as the presence of hematopoietic stem cells such as erythroid and myeloid lineage plus megakaryocytes in extramedullary sites like liver, spleen and lymph nodes and is usually associated with either bone marrow or hematological disorders. Mammary EMH is a rare condition either in human and veterinary medicine and can be associated with benign mixed mammary tumors, similarly to that described in this case.  相似文献   
4.
In the present paper we performed a morphological characterization of mouse peritoneal cells stimulated in vivo for 24 h with carrageenan (CAR) and lipopolysaccharide (LPS) by ultrastructural and flow cytometry analysis. In all samples, the flow cytometry studies showed the presence of three major populations consisting of monocytes, macrophages and lymphocytes. A special recruitment of monocytes was detected in CAR-injected mice. Macrophages and monocytes from CAR-treated mice displayed a characteristic phenotype, with a larger number of cytoplasmic vacuoles and numerous membrane projections, as compared to the cells collected from LPS- and PBS-injected mice. The induction of vacuolization was also confirmed upon in vitro treatment with CAR for 15 min to 24 h. The in vivo CAR-induced vacuoles were not related to lipid storage as judged by the lack of lipidic labeling after imidazole treatment at the ultrastructural level. In order to investigate the acidic nature of the vacuoles we used acidothropic probes, Lysotracker Yellow (LY) and Acridine Orange (AO). CAR injection activated the ability of peritoneal cells to incorporate LY around 2-5 times higher than control cells. However, the AO incorporation was 10-fold lower in CAR-stimulated cells than in LPS-stimulated ones. It is possible that the increase in intracellular vacuolization observed in CAR-stimulated cells could be related to exocytosis, since in most vacuoles the inflammatory protein MRP-14 was immunolocalized. The presence of MRP-14 in the culture supernatant of adherent peritoneal cells from CAR-injected mice was further comfirmed by ELISA, suggesting the discharge of MRP-14 enriched vacuole contents in the extracellular medium. We concluded that the morphological characteristics of activated monocytes and macrophages may depend on the nature of the triggering stimuli. Our observations reflect different functional phenotypes of monocytes/macrophages after in vivo stimulation with inflammatory agents such as CAR and LPS.  相似文献   
5.
Glycoconjugate Journal - Glycosaminoglycans (GAGs) are bioactive polysaccharides or glycoconjugates found in the fish waste having significant health impacts. In the present study it has been...  相似文献   
6.
The scarcity of water in arid and semiarid regions of the world is a problem that every day increases by climate change. The subsurface drip irrigation (SDI) and changes in population density of plants are alternatives that can be used to make a sustainable use of water. Therefore, the objectives of this study were to determine the combination that allows for an increased corn performance and efficient use of water without losing the quality of forage. Three different irrigation levels were applied through a system of a SDI at three different densities of forage maize plants in an arid region. The results demonstrated that by applying different levels of water, either enough or lack of soil moisture is created, which is directly reflected in crop yield, and its determining variables such as green forage and dry matter yield, and nutritional quality. The irrigation level to a 100% of potential evapotranspiration (PET), at a density of 80000 plants/ha, increased yield of green forage to 57664 kg/ha; crude protein was 8.59%, while the rest of the quality parameters decreased. This study allowed to conclude that the irrigation level was the major factor in the response of the crop.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号