首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Guldan H  Sterner R  Babinger P 《Biochemistry》2008,47(28):7376-7384
The exclusive presence of glycerol-1-phosphate dehydrogenases (G1PDH) has been postulated to be a key feature that distinguishes archaea from bacteria. However, homologues of G1PDH genes can be found in several bacterial species, among them the hitherto uncharacterized open reading frame araM from Bacillus subtilis. We produced recombinant AraM in Escherichia coli and demonstrate that the purified protein forms a homodimer that reversibly reduces dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in a NADH-dependent manner. AraM, which constitutes the first identified G1PDH from bacteria, has a similar catalytic efficiency as its archaeal homologues, but its activity is dependent on the presence of Ni (2+) instead of Zn (2+). On the basis of these findings and the analysis of an araM knockout mutant, we propose that AraM generates G1P for the synthesis of phosphoglycerolipids in Gram-positive bacterial species.  相似文献   
2.
Geranylgeranylglyceryl phosphate synthase (GGGPS) family enzymes catalyse the formation of an ether bond between glycerol‐1‐phosphate and polyprenyl diphosphates. They are essential for the biosynthesis of archaeal membrane lipids, but also occur in bacterial species, albeit with unknown physiological function. It has been known that there exist two phylogenetic groups (I and II) of GGGPS family enzymes, but a comprehensive study has been missing. We therefore visualized the variability within the family by applying a sequence similarity network, and biochemically characterized 17 representative GGGPS family enzymes regarding their catalytic activities and substrate specificities. Moreover, we present the first crystal structures of group II archaeal and bacterial enzymes. Our analysis revealed that the previously uncharacterized bacterial enzymes from group II have GGGPS activity like the archaeal enzymes and differ from the bacterial group I enzymes that are heptaprenylglyceryl phosphate synthases. The length of the isoprenoid substrate is determined in group II GGGPS enzymes by ‘limiter residues’ that are different from those in group I enzymes, as shown by site‐directed mutagenesis. Most of the group II enzymes form hexamers. We could disrupt these hexamers to stable and catalytically active dimers by mutating a single amino acid that acts as an ‘aromatic anchor’.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号